【opencv】dnn示例-segmentation.cpp 通过深度学习模型对图像进行实时语义分割

news2025/1/9 2:08:19

e55ff4c52cb530478497e60cff929474.png

模型下载地址:

http://dl.caffe.berkeleyvision.org/

9fbf6b2618efb630eaa23e41d28b604e.png

ccddd5b175882ee6394dcad749ba8689.png

594b2fb4f9371d3d9ba61189ad926654.png

配置文件下载:

https://github.com/opencv/opencv_extra/tree/4.x/testdata/dnn

该段代码是一个利用深度学习进行语义分割的OpenCV应用实例。下面将详细解释代码的功能和方法。

引入库

引入了一些必要的C++和OpenCV库,其中包括文件流、字符串处理、深度学习网络(dnn模块)、图像处理和高层图形界面。

参数字符串

定义了一些命令行参数,用于获取模型信息、图像处理以及设备选择等配置。

自定义函数

定义了showLegend和colorizeSegmentation两个函数,用于显示分类的图例及为分割结果上色。

主函数main

主函数执行以下主要步骤:

  • 解析命令行参数:使用OpenCV的CommandLineParser来获取命令行输入的参数。

  • 读取模型和配置:根据参数从文件中读取深度学习模型及其配置。

  • 读取类别和颜色信息:如果提供了类名和颜色的文件路径,则从文件中读取这些信息。

  • 设置网络:将模型和配置设置到网络中,并且选择计算后端和目标设备。

  • 处理视频帧或图片:循环从视频流或文件中读取帧,并对其进行处理:

  • 将帧转换为模型输入所需的blob。

  • 将blob作为网络的输入。

  • 进行网络前向传播,获取分割的score。

  • 使用colorizeSegmentation函数将分割的score转换成彩色分割图。

  • 结合原始帧和彩色分割图,显示在用户界面上。

  • 如果有类别信息,显示图例窗口。

图像分割和上色

colorizeSegmentation函数计算每个像素点的最大得分类别,并将对应颜色填充到分割图中。

showLegend函数在独立窗口中显示每个类别及其对应颜色的图例。

运行流程

用户通过命令行运行程序,可以选择加载本地视频文件、图像文件或打开摄像头。程序会连续读取帧,并将每一帧通过神经网络进行分析,实现实时的图像分割功能。分割结果彩色化后与原图结合,展现给用户

总的来说,这段代码实现了通过深度学习模型对图像进行实时语义分割,并通过OpenCV的GUI功能将结果呈现给用户。它可以很好地适用于视频流分析,如自动驾驶车辆的视觉系统中实时理解道路情况。

#include <fstream>  // 包含fstream库,用于文件的读写操作
#include <sstream>  // 包含sstream库,用于字符串流的操作


#include <opencv2/dnn.hpp>             // 包含OpenCV深度神经网络(dnn)部分的头文件
#include <opencv2/imgproc.hpp>         // 包含OpenCV图像处理部分的头文件
#include <opencv2/highgui.hpp>         // 包含OpenCV用户界面部分的头文件


#include "common.hpp"  // 包含示例代码中定义的通用函数和变量


// 声明并初始化一个存储命令行参数的字符串
std::string keys =
    "{ help  h     | | Print help message. }" // 帮助信息
    "{ @alias      |fcn8s | An alias name of model to extract preprocessing parameters from models.yml file. }" // 模型别名
    "{ zoo         | models.yml | An optional path to file with preprocessing parameters }" // models.yml文件路径
    "{ device      |  0 | camera device number. }" // 摄像头设备号
    "{ width      |  500 |  }"
    "{ height      |  500 |   }"
    "{ input i     |test1.mp4 | Path to input image or video file. Skip this argument to capture frames from a camera. }" // 输入图片或视频文件的路径
    "{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }" // 模型框架,默认自动检测
    "{ classes     | pascal-classes.txt| Optional path to a text file with names of classes. }" // 类名文件路径
    "{ colors      | | Optional path to a text file with colors for an every class. "
                      "An every color is represented with three values from 0 to 255 in BGR channels order. }" // 类颜色文件路径
    "{ backend     | 5 | Choose one of computation backends: "
                        "0: automatically (by default), "
                        "1: Halide language (http://halide-lang.org/), "
                        "2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
                        "3: OpenCV implementation, "
                        "4: VKCOM, "
                        "5: CUDA }" // 计算后端,默认自动选择
    "{ target      | 6 | Choose one of target computation devices: "
                        "0: CPU target (by default), "
                        "1: OpenCL, "
                        "2: OpenCL fp16 (half-float precision), "
                        "3: VPU, "
                        "4: Vulkan, "
                        "6: CUDA, "
                        "7: CUDA fp16 (half-float preprocess) }"; // 计算设备,默认CPU


using namespace cv;  // 使用cv命名空间
using namespace dnn; // 使用dnn命名空间


std::vector<std::string> classes; // 存储类名的向量
std::vector<Vec3b> colors; // 存储每个类对应颜色的向量


void showLegend(); // 前向声明showLegend函数,用于显示图例


void colorizeSegmentation(const Mat &score, Mat &segm); // 前向声明colorizeSegmentation函数,用于给分割结果上色


// 主函数
int main(int argc, char** argv)
{
    CommandLineParser parser(argc, argv, keys); // 命令行参数解析器


    const std::string modelName = parser.get<String>("@alias"); // 获取模型别名参数
    const std::string zooFile = parser.get<String>("zoo"); // 获取zoo文件参数


    keys += genPreprocArguments(modelName, zooFile); // 为命令行参数解析器添加预处理参数


    parser = CommandLineParser(argc, argv, keys); // 使用更新后的参数集重新构建命令行参数解析器
    // 打印脚本使用帮助
    parser.about("Use this script to run semantic segmentation deep learning networks using OpenCV.");
    if (argc == 1 || parser.has("help"))
    {
        parser.printMessage(); // 打印帮助信息
        return 0; // 退出程序
    }


    float scale = parser.get<float>("scale"); // 获取缩放比例参数
    Scalar mean = parser.get<Scalar>("mean"); // 获取均值参数
    bool swapRB = parser.get<bool>("rgb"); // 获取是否交换红蓝通道的参数
    int inpWidth = parser.get<int>("width"); // 获取输入宽度参数
    int inpHeight = parser.get<int>("height"); // 获取输入高度参数
    String model = findFile(parser.get<String>("model")); // 查找模型文件
    String config = findFile(parser.get<String>("config")); // 查找配置文件
    String framework = parser.get<String>("framework"); // 获取框架参数
    int backendId = parser.get<int>("backend"); // 获取后端ID参数
    int targetId = parser.get<int>("target"); // 获取目标设备ID参数


    // 打开类名文件
    if (parser.has("classes"))
    {
        std::string file = parser.get<String>("classes");
        std::ifstream ifs(file.c_str());
        if (!ifs.is_open())
            CV_Error(Error::StsError, "File " + file + " not found"); // 文件未能打开,则报错
        std::string line;
        while (std::getline(ifs, line))
        {
            classes.push_back(line); // 将类名逐行读入classes向量
        }
    }


    // 打开颜色文件
    if (parser.has("colors"))
    {
        std::string file = parser.get<String>("colors");
        std::ifstream ifs(file.c_str());
        if (!ifs.is_open())
            CV_Error(Error::StsError, "File " + file + " not found"); // 文件未能打开,则报错
        std::string line;
        while (std::getline(ifs, line))
        {
            std::istringstream colorStr(line.c_str()); // 使用字符串流读取颜色信息


            Vec3b color;
            for (int i = 0; i < 3 && !colorStr.eof(); ++i)
                colorStr >> color[i];
            colors.push_back(color); // 将颜色逐行读入colors向量
        }
    }


    if (!parser.check())
    {
        parser.printErrors(); // 打印参数解析错误
        return 1; // 退出程序
    }


    CV_Assert(!model.empty()); //! [Read and initialize network] 确保模型路径不为空,并初始化网络
    Net net = readNet(model, config, framework); // 读取网络模型
    net.setPreferableBackend(backendId); // 设置计算后端
    net.setPreferableTarget(targetId);   // 设置目标计算设备
    //! [Read and initialize network]


    // 创建一个窗口
    static const std::string kWinName = "Deep learning semantic segmentation in OpenCV";
    namedWindow(kWinName, WINDOW_NORMAL);


    //! [Open a video file or an image file or a camera stream]
    VideoCapture cap; // 视频捕获对象
    if (parser.has("input"))
        cap.open(parser.get<String>("input")); // 打开输入的图片或视频文件
    else
        cap.open(parser.get<int>("device")); // 打开摄像头
    //! [Open a video file or an image file or a camera stream]


    // 处理帧数据
    Mat frame, blob; // 定义用来存放帧和blob的矩阵
    cap >> frame;
    VideoWriter video("fcn8s-heavy-pascal_video.avi", VideoWriter::fourcc('M', 'J', 'P', 'G'), 10, frame.size(), true);


    if (!video.isOpened())
    {
        std::cout << "Could not open the output video file for write\n";
        return -1;
    }
    while (waitKey(1) < 0) // 等待按键事件
    {
        cap >> frame; // 从视频捕获对象读取一帧
        if (frame.empty())
        {
            waitKey(); // 若帧为空,等待按键后退出循环
            break;
        }


        //! [Create a 4D blob from a frame]
        blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false); // 从帧中创建一个4维blob
        //! [Create a 4D blob from a frame]


        //! [Set input blob]
        net.setInput(blob); // 设置网络输入
        //! [Set input blob]
        //! [Make forward pass]
        Mat score = net.forward(); // 执行前向传播
        //! [Make forward pass]


        Mat segm; // 用于存储分割结果的矩阵
        colorizeSegmentation(score, segm); // 给分割结果上色


        resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST); // 调整分割结果的大小以匹配原始帧大小
        addWeighted(frame, 0.1, segm, 0.9, 0.0, frame); // 将帧和分割结果合并显示


        // 显示效率信息
        std::vector<double> layersTimes; // 存储每层时间的向量
        double freq = getTickFrequency() / 1000; // 获取时钟频率
        double t = net.getPerfProfile(layersTimes) / freq; // 计算网络执行时间
        std::string label = format("Inference time: %.2f ms", t); // 格式化时间信息
        putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); // 在帧上绘制时间信息


        imshow(kWinName, frame); // 显示窗口
        video.write(frame);
        if (!classes.empty())
            showLegend(); // 显示图例
    }
    return 0; // 程序正常退出
}


// 给分割结果上色的函数
void colorizeSegmentation(const Mat &score, Mat &segm)
{
    const int rows = score.size[2]; // 获取score的行数
    const int cols = score.size[3]; // 获取score的列数
    const int chns = score.size[1]; // 获取score的通道数


    if (colors.empty())
    {
        // 产生颜色
        colors.push_back(Vec3b()); // 添加黑色
        for (int i = 1; i < chns; ++i)
        {
            Vec3b color; // 定义颜色
            for (int j = 0; j < 3; ++j)
                color[j] = (colors[i - 1][j] + rand() % 256) / 2; // 随机生成颜色
            colors.push_back(color); // 添加颜色到colors向量
        }
    }
    else if (chns != (int)colors.size())
    {
        CV_Error(Error::StsError, format("Number of output classes does not match "
                                         "number of colors (%d != %zu)", chns, colors.size())); // 检测颜色数是否与通道数匹配
    }


    Mat maxCl = Mat::zeros(rows, cols, CV_8UC1); // 创建类别的索引矩阵
    Mat maxVal(rows, cols, CV_32FC1, score.data); // 创建分数矩阵
    // 遍历通道,通道数从1开始,因为通道0为背景
    for (int ch = 1; ch < chns; ch++)
    {
        // 遍历得分图的每一行
        for (int row = 0; row < rows; row++)
        {
            // 获取当前行的得分数据指针
            const float *ptrScore = score.ptr<float>(0, ch, row);
            // 获取最大类别的索引的行指针
            uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
            // 获取最大值的行指针
            float *ptrMaxVal = maxVal.ptr<float>(row);
            // 遍历当前行的每一列
            for (int col = 0; col < cols; col++)
            {
                // 如果当前位置的得分大于之前的最大值,则更新最大值和最大类别索引
                if (ptrScore[col] > ptrMaxVal[col])
                {
                    ptrMaxVal[col] = ptrScore[col];
                    ptrMaxCl[col] = (uchar)ch;
                }
            }
        }
    }
    
    // 根据最大类别索引创建分割图
    segm.create(rows, cols, CV_8UC3);
    for (int row = 0; row < rows; row++)
    {
        // 获取最大类别索引的指针
        const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
        // 获取分割图的行指针
        Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
        for (int col = 0; col < cols; col++)
        {
            // 根据类别索引设置分割图的颜色
            ptrSegm[col] = colors[ptrMaxCl[col]];
        }
    }
}


// 显示类别的图例
void showLegend()
{
    // 定义图例块的高度
    static const int kBlockHeight = 30;
    // 定义图例Mat对象
    static Mat legend;
    // 如果图例为空,则创建一个新的图例
    if (legend.empty())
    {
        // 获取类别的数量
        const int numClasses = (int)classes.size();
        // 如果颜色数量和类别数量不匹配,则报错
        if ((int)colors.size() != numClasses)
        {
            CV_Error(Error::StsError, format("Number of output classes does not match "
                                             "number of labels (%zu != %zu)", colors.size(), classes.size()));
        }
        // 创建图例Mat对象
        legend.create(kBlockHeight * numClasses, 200, CV_8UC3);
        for (int i = 0; i < numClasses; i++)
        {
            // 获取每个类别的图例块
            Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight);
            // 设置图例块的颜色
            block.setTo(colors[i]);
            // 在图例块上写上类别的名称
            putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255));
        }
        // 创建一个窗口显示图例
        namedWindow("Legend", WINDOW_NORMAL);
        imshow("Legend", legend);
    }
}

这段代码是一个基于OpenCV实现的语义分割深度学习网络的应用。其中包含处理图像数据转化为Blob,通过神经网络前向传播输出分割得分图,再对得分图进行处理,提取出每个像素点的最大得分对应的类别,并根据这个最大类别类别的索引来进行图像分割的颜色填充。此外,还有一个showLegend函数用于生成并展示一个包含所有类别及其对应颜色的图例。整体而言,这段代码是实现图像语义分割功能的一个部分。

函数colorizeSegmentation负责对图像分类得分进行上色,从而生成彩色的分割图。函数首先计算输入得分score的行数、列数以及通道数。然后,它检查是否已经定义了颜色映射,如果没有定义,则生成一组颜色映射。接下来,函数遍历每个像素位置,找到具有最大得分的通道,并记录这个通道索引到maxCl中。最后,根据通道索引,在最终的分割图像segm上应用对应的颜色。这样做的结果是得到一个彩色标记了各个类别区域的图像,便于视觉分析和理解。

笔记:

blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);

8eab5364f25366c7c31c72116d4633b1.png

Mat score = net.forward();

d3975cbddbf81eed0e42fec55e6b5582.png

The End

作者陈晓永:智能装备专业高级职称,软件工程师,机械设计中级职称,机器人与自动化产线仿真动画制作 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1606308.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

蓝桥杯2024年第十五届省赛真题-宝石组合

思路&#xff1a;参考博客&#xff0c;对Ha,Hb,Hc分别进行质因数分解会发现&#xff0c;S其实就等于Ha&#xff0c;Hb&#xff0c;Hc的最大公约数&#xff0c;不严谨推导过程如下&#xff08;字丑勿喷&#xff09;&#xff1a; 找到此规律后&#xff0c;也不能枚举Ha&#xff…

Go 单元测试之mock接口测试

文章目录 一、gomock 工具介绍二、安装三、使用3.1 指定三个参数3.2 使用命令为接口生成 mock 实现3.3 使用make 命令封装处理mock 四、接口单元测试步骤三、小黄书Service层单元测试四、flags五、打桩&#xff08;stub&#xff09;参数 六、总结6.1 测试用例定义6.2 设计测试用…

医学图像三维重建与可视化系统 医学图像分割 区域增长

医学图像的三维重建与可视化&#xff0c;这是一个非常有趣且具有挑战性的课题&#xff01;在这样的项目中&#xff0c;可以探索不同的医学图像技术&#xff0c;比如MRI、CT扫描等&#xff0c;然后利用这些图像数据进行三维重建&#xff0c;并将其可视化以供医生或研究人员使用。…

解决Mac使用Vscode无法调用外部终端

前言 今天遇到一个很奇怪的问题&#xff0c;之前好好的用Vscode还能调用外部终端&#xff0c;怎么今天不行了&#xff1f;问题出在哪里呢&#xff1f;请听我娓娓道来。 检查配置文件 我查看了一下配置文件&#xff0c;发现配置文件都是调用外部控制台&#xff0c;没毛病啊。 …

Objective-C网络数据捕获:使用MWFeedParser库下载Stack Overflow示例

概述 Objective-C开发中&#xff0c;网络数据捕获是一项常见而关键的任务&#xff0c;特别是在处理像RSS源这样的实时网络数据流时。MWFeedParser库作为一个优秀的解析工具&#xff0c;提供了简洁而强大的解决方案。本文将深入介绍如何利用MWFeedParser库&#xff0c;以高效、…

(最详细)关于List和Set的区别与应用

关于List与Set的区别 List和Set都继承自Collection接口&#xff1b; List接口的实现类有三个&#xff1a;LinkedList、ArrayList、Vector。Set接口的实现类有两个&#xff1a;HashSet(底层由HashMap实现)、LinkedHashSet。 在List中&#xff0c;List.add()是基于数组的形式来添…

Spring Boot后端+Vue前端:打造高效二手车交易系统

作者介绍&#xff1a;✌️大厂全栈码农|毕设实战开发&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。 &#x1f345;获取源码联系方式请查看文末&#x1f345; 推荐订阅精彩专栏 &#x1f447;&#x1f3fb; 避免错过下次更新 Springboot项目精选实战案例 更多项目…

机器学习笔记 - 使用 OpenCV 的结构化森林进行边缘检测

一、简述 边缘检测是计算机视觉领域中一项非常重要的任务。这是许多纯计算机视觉任务(例如轮廓检测)的第一步。即使涉及深度学习,较深层也首先学习识别边缘,然后再学习图像的复杂特征。所以,我们可以说边缘检测在计算机视觉领域非常重要。拥有良好且高效的图像边缘检测算法…

后端返回的数据中含有Null的则不在前端展示

方式 1&#xff1a;application 上加配置 只需要在配置文件 上&#xff0c;增加 如下配置。 application 格式配置&#xff1a; spring.jackson.default-property-inclusionnon_null yml 格式配置&#xff1a; spring:jackson:default-property-inclusion: non_null注意&a…

美团财务科技后端一面:如何保证数据一致性?延时双删第二次失败如何解决?

更多大厂面试内容可见 -> http://11come.cn 美团财务科技后端一面&#xff1a;项目内容拷打 美团财务科技后端一面&#xff1a;项目相关面试题&#xff0c;主要包含 Zset、延时双删失败重试、热点数据解决、ThreadLocal 这几个方面相关的内容 由于前几个问题是对个人项目的…

混合云构建-如何创建一个高可用的Site to Site VPN 连接 Azure 和GCP云

在现代云计算环境中,企业通常会采用多云战略,将工作负载分布在不同的云服务提供商上。这种方式可以提高可用性、降低供应商锁定风险,并利用每个云提供商的独特优势。然而,在这种情况下,需要确保不同云环境之间的互联互通,以实现无缝的数据传输和应用程序集成。 本文将详细介绍…

微信小程序之点击事件

微信小程序中常用的点击事件主要是 tap&#xff0c;但除此之外还有其他的触摸类事件&#xff0c;用于不同的交互场景。以下是一些常见的点击和触摸相关的事件及其区别&#xff1a; 1、tap——最基本的点击事件&#xff0c;适用于一般的轻触交互&#xff0c;类似于 HTML 中的 c…

浅析binance新币OMNI的前世今生

大盘跌跌不休&#xff0c;近期唯一的指望就是binance即将上线的OMNI 。虽然目前查到的空投数量不及预期&#xff0c;但OMNI能首发币安&#xff0c;确实远超预期了。 OMNI代币总量1亿&#xff0c;初始流通仅10,391,492枚&#xff0c;其中币安Lanchpool可挖350万枚 对于OMNI这个…

【做算法学数据结构】【链表】删除排序链表中的重复元素

链表 链表单向链表双向链表 题目代码 链表 当涉及到数据结构时&#xff0c;链表是一种常见且重要的数据结构。链表由一系列节点组成&#xff0c;每个节点包含数据和指向下一个节点的引用。相比于数组&#xff0c;链表的大小可以动态地增长或缩小&#xff0c;因为每个节点只需要…

风力发电自动化控制系统中的智能化技术应用研究

风力发电自动化控制系统中的智能化技术应用研究 随碳中和目标的提出和执行&#xff0c;风能发电作为新能源行业的核心部分&#xff0c;步入了它的黄金发展期。由于风能资源具有间歇性、随机性等特点&#xff0c;这给风电的高效利用带来了巨大挑战。为了增强风力发电系统的工作效…

枚举类型介绍

1.如果一个变量只有几种可能的值&#xff0c;比如星期几 son,mon,tus,wed,fri,sat 列表中的名字&#xff0c;可以自己定义&#xff0c;无需像变量一样去申请 枚举变量&#xff1a;只限列表中的情况&#xff0c;值默认从0开始&#xff0c;枚举元素不能被赋值&#xff0c;可以指定…

OpenCV从入门到精通实战(七)——探索图像处理:自定义滤波与OpenCV卷积核

本文主要介绍如何使用Python和OpenCV库通过卷积操作来应用不同的图像滤波效果。主要分为几个步骤&#xff1a;图像的读取与处理、自定义卷积函数的实现、不同卷积核的应用&#xff0c;以及结果的展示。 卷积 在图像处理中&#xff0c;卷积是一种重要的操作&#xff0c;它通过…

JAVA网络编程、项目验证码实现

什么是网络编程? 在网络通信协议下&#xff0c;不同计算机上运行的程序&#xff0c;进行的数据传输。 应用场景&#xff1a;即时通信、网游对战、金融证券、国际贸易、邮件、等等 不管是什么场景&#xff0c;都是计算机跟计算机之间通过网络进行数据传输 Java中可以使用ja…

面试经典算法系列之二叉树17 -- 验证二叉树

面试经典算法32 - 验证二叉树 LeetCode.98 公众号&#xff1a;阿Q技术站 问题描述 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&#xff1a; 节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当…

浅写个登录(无js文件)

全部代码如下&#xff0c;无需编写wxss文件&#xff0c;渲染都在style里面&#xff1a; <view style"height: 250rpx;width: 100%;"> <!-- 背景图片 --><view style"position: absolute; background-color: antiquewhite; height: 250rpx;width…