3D模型处理的多进程并行【Python】

news2024/12/28 19:54:48

今天我们将讨论如何使用 Python 多进程来处理大量3D数据。 我将讲述一些可能在手册中找到的一般信息,并分享我发现的一些小技巧,例如将 tqdm 与多处理 imap 结合使用以及并行处理存档。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割

那么我们为什么要诉诸并行计算呢? 使用数据有时会出现与大数据相关的问题。 每次我们遇到 RAM 不适合的数据时,我们都需要逐段处理它。 幸运的是,现代编程语言允许我们生成在多核处理器上完美工作的多个进程(甚至线程)。注意:这并不意味着单核处理器无法处理多处理,这是有关该主题的 Stack Overflow 讨论。

今天我们将尝试计算网格和点云之间的距离这一常见的 3D 计算机视觉任务。 例如,当你需要在所有可用网格中查找定义与给定点云相同的 3D 对象的网格时,可能会遇到此问题。

我们的数据由存储在 .7z 存档中的 .obj 文件组成,这在存储效率方面非常出色。 但是当我们需要访问它的确切部分时,我们应该付出努力。 在这里,我定义了包装 7-zip 存档并提供底层数据接口的类。

from io import BytesIO
import py7zlib

class MeshesArchive(object):
    def __init__(self, archive_path):
        fp = open(archive_path, 'rb')
        self.archive = py7zlib.Archive7z(fp)
        self.archive_path = archive_path
        self.names_list = self.archive.getnames()
        
    def __len__(self):
        return len(self.names_list)
    
    def get(self, name):
        bytes_io = BytesIO(self.archive.getmember(name).read())
        return bytes_io

    def __getitem__(self, idx):
        return self.get(self.names[idx])
    
    def __iter__(self):
        for name in self.names_list:
            yield self.get(name)

这个类几乎不依赖 py7zlib 包,它允许我们在每次调用 get 方法时解压缩数据,并为我们提供存档内的文件数量。 我们还定义了 __iter__ ,它将帮助我们像在可迭代对象上一样在该对象上启动多处理映射。

这个定义为我们提供了迭代存档的可能性,但它是否允许我们并行随机访问内容? 这是一个有趣的问题,我在网上没有找到答案,但如果深入研究 py7zlib 的源代码,我们可以回答它。

在这里,我提供了 pylzma 的代码片段:

class Archive7z(Base):
  def __init__(self, file, password=None):
    # ...
    self.files = {}
    # ...
    for info in files.files:
      # create an instance of ArchiveFile that knows location on disk
      file = ArchiveFile(info, pos, src_pos, folder, self, maxsize=maxsize)
      # ...
      self.files.append(file)
    # ...
    self.files_map.update([(x.filename, x) for x in self.files])
        
  # method that returns an ArchiveFile from files_map dictionary
  def getmember(self, name):
      if isinstance(name, (int, long)):
          try:
              return self.files[name]
          except IndexError:
              return None

      return self.files_map.get(name, None)
    
    
class Archive7z(Base):
  def read(self):
    # ...
    for level, coder in enumerate(self._folder.coders):
      # ...
      # get the decoder and decode the underlying data
      data = getattr(self, decoder)(coder, data, level, num_coders)

    return data

摘自pylzma源码,省略了很多

我相信从上面的要点可以清楚地看出,只要同时多次读取存档,就没有理由被阻止。

接下来我们快速介绍一下什么是网格和点云。 首先是网格,它们是顶点、边和面的集合。 顶点由空间中的 (x,y,z) 坐标定义,并分配有唯一的编号。 边和面相应地是点对和三元组的组,并使用提到的唯一点 ID 进行定义。 通常,当我们谈论“网格”时,我们指的是“三角形网格”,即由三角形组成的表面。 使用 trimesh 库在 Python 中处理网格要容易得多,例如它提供了在内存中加载 .obj 文件的接口。 要在 Jupyter Notebook 中显示 3D 对象并与之交互,可以使用 k3d 库。

因此,通过以下代码片段,我回答了这个问题:“如何使用 k3d 在 jupyter 中绘制 atrimeshobject?”

import trimesh
import k3d

with open("./data/meshes/stanford-bunny.obj") as f:
    bunny_mesh = trimesh.load(f, 'obj')

plot = k3d.plot()
mesh = k3d.mesh(bunny_mesh.vertices, bunny_mesh.faces)
plot += mesh
plot.display()

k3d 显示的斯坦福兔子网格(不幸的是这里没有响应)

其次,点云,它们是表示空间中物体的 3D 点阵列。 许多 3D 扫描仪生成点云作为扫描对象的表示。 为了演示目的,我们可以读取相同的网格并将其顶点显示为点云。

import trimesh
import k3d

with open("./data/meshes/stanford-bunny.obj") as f:
    bunny_mesh = trimesh.load(f, 'obj')
    
plot = k3d.plot()
cloud = k3d.points(bunny_mesh.vertices, point_size=0.0001, shader="flat")
plot += cloud
plot.display()

将顶点绘制为点云

k3d绘制的点云

正如上面提到的,3D 扫描仪为我们提供了点云。 假设我们有一个网格数据库,并且希望在数据库中找到与扫描对象(即点云)对齐的网格。 为了解决这个问题,我们可以提出一种简单的方法。 我们将搜索给定点云的点与存档中的每个网格之间的最大距离。 如果对于某些网格来说,1e-4 的距离较小,我们会认为该网格与点云对齐。

最后,我们来到了多处理部分。 请记住,我们的存档有大量文件可能无法同时放入内存中,我们更喜欢并行处理它们。 为了实现这一点,我们将使用多处理池,它使用 map 或 imap/imap_unordered 方法处理用户定义函数的多次调用。 map 和 imap 之间影响我们的区别在于, map 在发送到工作进程之前将可迭代对象转换为列表。 如果存档太大而无法写入 RAM,则不应将其解压到 Python 列表中。 在另一种情况下,它们的执行速度相似。

[Loading meshes: pool.map w/o manager] Pool of 4 processes elapsed time: 37.213207403818764 sec
[Loading meshes: pool.imap_unordered w/o manager] Pool of 4 processes elapsed time: 37.219303369522095 sec

在上面你可以看到从适合内存的网格存档中进行简单读取的结果。

使用 imap 更进一步。 让我们讨论如何实现找到靠近点云的网格的目标。 这是数据,我们有来自斯坦福模型的 5 个不同的网格。 我们将通过向斯坦福兔子网格的顶点添加噪声来模拟 3D 扫描。

import numpy as np
from numpy.random import default_rng

def normalize_pc(points):
    points = points - points.mean(axis=0)[None, :]
    dists = np.linalg.norm(points, axis=1)
    scaled_points = points / dists.max()
    return scaled_points


def load_bunny_pc(bunny_path):
    STD = 1e-3 
    with open(bunny_path) as f:
        bunny_mesh = load_mesh(f)
    # normalize point cloud 
    scaled_bunny = normalize_pc(bunny_mesh.vertices)
    # add some noise to point cloud
    rng = default_rng()
    noise = rng.normal(0.0, STD, scaled_bunny.shape)
    distorted_bunny = scaled_bunny + noise
    return distorted_bunny

当然,我们之前对下面的点云和网格顶点进行了标准化,以在 3D 立方体中缩放它们。

为了计算点云和网格之间的距离,我们将使用 igl。 为了最终确定,我们需要编写一个将在每个进程及其依赖项中调用的函数。 让我们用下面的片段来总结一下。

import itertools
import time

import numpy as np
from numpy.random import default_rng

import trimesh
import igl
from tqdm import tqdm

from multiprocessing import Pool

def load_mesh(obj_file):
    mesh = trimesh.load(obj_file, 'obj')
    return mesh

def get_max_dist(base_mesh, point_cloud):
    distance_sq, mesh_face_indexes, _ = igl.point_mesh_squared_distance(
        point_cloud,
        base_mesh.vertices,
        base_mesh.faces
    )
    return distance_sq.max()

def load_mesh_get_distance(args):
    obj_file, point_cloud = args[0], args[1]
    mesh = load_mesh(obj_file)
    mesh.vertices = normalize_pc(mesh.vertices)
    max_dist = get_max_dist(mesh, point_cloud)
    return max_dist

def read_meshes_get_distances_pool_imap(archive_path, point_cloud, num_proc, num_iterations):
    # do the meshes processing within a pool
    elapsed_time = []
    for _ in range(num_iterations):
        archive = MeshesArchive(archive_path)
        pool = Pool(num_proc)
        start = time.time()
        result = list(tqdm(pool.imap(
            load_mesh_get_distance,
            zip(archive, itertools.repeat(point_cloud)),
        ), total=len(archive)))
        pool.close()
        pool.join()
        end = time.time()
        elapsed_time.append(end - start)

    print(f'[Process meshes: pool.imap] Pool of {num_proc} processes elapsed time: {np.array(elapsed_time).mean()} sec')
    
    for name, dist in zip(archive.names_list, result):
        print(f"{name} {dist}")
    
    return result
  
 if __name__ == "__main__":
    bunny_path = "./data/meshes/stanford-bunny.obj"
    archive_path = "./data/meshes.7z"
    num_proc = 4
    num_iterations = 3

    point_cloud = load_bunny_pc(bunny_path)
    read_meshes_get_distances_pool_no_manager_imap(archive_path, point_cloud, num_proc, num_iterations)

这里 read_meshes_get_distances_pool_imap 是一个核心函数,其中完成了以下操作:

  • MeshesArchive 和 multiprocessing.Pool 已初始化
  • 应用 tqdm 来监视池进度,并手动完成整个池的分析
  • 执行结果的输出

请注意我们如何将参数传递给 imap,使用 zip(archive, itertools.repeat(point_cloud)) 从 archive 和 point_cloud 创建新的可迭代对象。 这使我们能够将点云数组粘贴到存档的每个条目,从而避免将存档转换为列表。

执行结果如下所示:

100%|####################################################################| 5/5 [00:00<00:00,  5.14it/s]
100%|####################################################################| 5/5 [00:00<00:00,  5.08it/s]
100%|####################################################################| 5/5 [00:00<00:00,  5.18it/s]
[Process meshes: pool.imap w/o manager] Pool of 4 processes elapsed time: 1.0080536206563313 sec
armadillo.obj 0.16176825266293382
beast.obj 0.28608649819198073
cow.obj 0.41653845909820164
spot.obj 0.22739556571296735
stanford-bunny.obj 2.3699851136074263e-05

我们可以发现斯坦福兔子是最接近给定点云的网格。 还可以看出,我们没有使用大量数据,但我们已经证明,即使存档中有大量网格,该解决方案也能发挥作用。

多重处理使数据科学家不仅在 3D 计算机视觉方面而且在机器学习的其他领域都取得了出色的表现。 理解并行执行比循环内执行要快得多,这一点非常重要。 尤其是当算法编写正确时,差异变得非常显着。 大量数据揭示的问题如果没有创造性的方法来利用有限的资源就无法解决。 幸运的是,Python 语言及其丰富的库可以帮助我们数据科学家解决此类问题。


原文链接:3D模型处理的并行化 - BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1605562.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PLC工业网关,实现PLC联网

在当今工业自动化领域&#xff0c;PLC&#xff08;可编程逻辑控制器&#xff09;作为控制系统的核心&#xff0c;其稳定性和可靠性至关重要。然而&#xff0c;随着工业互联网和智能制造的快速发展&#xff0c;如何实现PLC的联网通信&#xff0c;提高数据传输效率&#xff0c;成…

URL的绝对路径/相对路

一、URL 浏览器要想发起请求,必须是一个完整的url地址. URL是一个固定格式的字符串 它表达了&#xff1a; 从网络中 哪台计算机&#xff08;domain&#xff09; 中的 哪个程序&#xff08;port&#xff09; 寻找 哪个服务&#xff08;path&#xff09;&#xff0c;并注明了…

数据治理中心DataArts Studio学习

一、什么是DataArts Studio&#xff1f; 数据治理中心DataArts Studio是为了应对上述挑战&#xff0c;针对企业数字化运营诉求提供的具有数据全生命周期管理和智能数据管理能力的一站式治理运营平台&#xff0c;包含数据集成、数据开发、数据架构、数据质量监控、数据资产管理…

使用vue2-ace-editor实现可选择的代码编辑器

最近在琢磨前端&#xff0c;因项目中需要在页面上编辑代码&#xff0c;所以需要写一个代码编辑器供用户使用。找了几个编辑器相关的组件&#xff0c;对比了下感觉还是vue2-ace-editor用着舒服&#xff0c;写了demo供大家参考。 由于我的项目使用的是vue2&#xff0c;二开鹅厂的…

MySQL高负载排查方法最佳实践(15/16)

高负载排查方法 CPU占用率过高问题排查 使用mpstat查看cpu使用情况。 # mpstat 是一款 CPU 性能指标实时展示工具 # 能展示每个 CPU 核的资源视情况&#xff0c;同时还能将资源使用情况进行汇总展示 # 如果CPU0 的 %idle 已经为 0 &#xff0c;说明此核已经非常繁忙# 打印所…

算法训练营第25天回溯(分割)

回溯算法&#xff08;分割&#xff09; 131.分割回文串 力扣题目链接(opens new window) 题目 给定一个字符串 s&#xff0c;将 s 分割成一些子串&#xff0c;使每个子串都是回文串。 返回 s 所有可能的分割方案。 示例: 输入: “aab” 输出: [ [“aa”,“b”], [“a”,“…

Redis中的Lua脚本(二)

Lua脚本 创建排序辅助函数 为了防止带有副作用的函数令脚本产生不一致的数据&#xff0c;Redis对math库的math.random函数和math.randomseed函数进行了替换。对于Lua脚本来说&#xff0c;另一个可能产生不一致数据的地方是哪些带有不确定性质的命令&#xff0c;比如对于一个集…

Linux中如何安装ImageMagick及其常规使用命令

在Linux中安装ImageMagick可以通过包管理工具进行安装。具体步骤如下&#xff1a; 打开终端&#xff08;Terminal&#xff09;。 使用以下命令更新系统软件包列表&#xff1a; sudo apt update使用以下命令安装ImageMagick&#xff1a; sudo apt install imagemagick安装完…

大型网站系统架构演化实例_2.使用缓存改善网站性能

1.使用缓存改善网站性能 网站访问的特点和现实世界的财富分配一样遵循二八定律&#xff1a;80%的业务访问集中在20%的数据上。既然大部分业务访问集中在一小部分数据上&#xff0c;那么如果把这一小部分数据缓存在内存中&#xff0c;就可以减少数据库的访问压力&#xf…

在Linux系统中,禁止有线以太网使用NTP服务器进行时间校准的几种方法

目录标题 方法 1&#xff1a;修改NTP配置以禁止所有同步方法 2&#xff1a;通过网络配置禁用NTP同步方法 3&#xff1a;禁用NTP服务 在Linux系统中&#xff0c;如果想要禁止有线以太网使用NTP服务器进行时间校准&#xff0c;可以通过以下几种方法之一来实现&#xff1a; 方法 …

LDF、DBC、BIN、HEX、S19、BLF、asc、csv、ARXML、slx等(未完待续)

文章目录 如题如题 LDF是LIN报文格式文件,把这个直接拖到软件里面,可以发报文和接收报文 DBC是CAN报文格式文件,把这个直接拖到软件里面,可以发报文和接收报文 BIN文件烧录在BOOT里面(stm32),有人喜欢叫固件,这个固件就是bin文件,bin文件比hex文件体积小 其实BOOT也…

探索AI提示词网站:助力内容创作与AI对话

嗨&#xff0c;大家好&#xff01;在这个充满创意的时代里&#xff0c;AI技术为我们带来了许多惊喜和便利。如果你是一个内容创作者&#xff0c;无论是在撰写博客还是进行科技对话&#xff0c;今天我将向大家介绍几个能够提升与AI对话效率的神奇网站。 1. FlowGPT 首先&#xf…

PhotoShop2024安装包(亲测可用)

目录 一、软件简介 二、软件下载 一、软件简介 Adobe Photoshop是一款由Adobe Systems开发的图像编辑软件。它被广泛用于图像处理和数字艺术创作&#xff0c;是设计师、摄影师和艺术家们的首选工具之一。 主要功能&#xff1a; 图像编辑&#xff1a; Photoshop提供了丰富的编辑…

点云的投影------PCL

点云的投影 /// <summary> /// 参数化模型投影点云 /// </summary> /// <param name"cloud">点云</param> /// <param name"x">投影平面x面的系数</param> /// <param name"y"></param> /// &…

M系Mac关闭SIP

文章目录 M系Mac关闭SIP一&#xff1a;查看SIP状态二&#xff1a;关闭SIP步骤 M系Mac关闭SIP 一&#xff1a;查看SIP状态 1、使用终端 打开终端 输入csrutil status&#xff0c;回车 你会看到以下信息中的一个&#xff0c;指示SIP状态 已打开 System Integrity Protection s…

制作一个RISC-V的操作系统十一-外部设备中断

文章目录 中断分类mie mip中断处理流程外部中断中断源PLICPriorityPendingEnableThresholdClaim/CompletePLIC工作流程设置uart寄存器IER设置uart寄存器LSRasm volatile("mv %0, tp" : "r" (x) );头文件不能定义函数&#xff0c;不然每次导入都会定义一次s…

C++修炼之路之list--C++中的双向循环链表

目录 前言 一&#xff1a;正式之前先回顾数据结构中的双向循环链表 二&#xff1a;list的简介 三&#xff1a;STL中list常用接口函数的介绍及使用 1.构造函数接口 2.list迭代器 范围for 3.数据的修改接口函数 4.list容量操作函数 5.list的迭代器失效 6.演示代码和测…

RAG学习笔记系列(一)

RAG 介绍 RAG 全称为 Retrieval Augmented Generation&#xff08;检索增强生成&#xff09;。是基于LLM构建系统的一种架构。 RAG 基本上可以理解为&#xff1a;搜索 LLM prompting。根据用户的查询语句&#xff0c;系统会先使用搜索算法获取到相关内容作为上下文&#xff0…

最大公约数和最小公倍数(C语言)

一、N-S流程图&#xff1b; 二、运行结果&#xff1b; 三、源代码&#xff1b; # define _CRT_SECURE_NO_WARNINGS # include <stdio.h>//实现最大公约数函数&#xff1b; int max(int x, int y) {//初始化变量值&#xff1b;int judge 1;//运算&#xff1b;judge x %…

ospf综合路由实验

1配置ip 2配置私网通&#xff08;配置双向验证&#xff09; 3配置静态缺省,公网通&#xff08;nat配置后因为没有缺省所以通不了&#xff0c;要么配置缺省要么配置特殊区域自动下发缺省&#xff09;配置mgre 4链路聚合&#xff0c;配置特殊区域&#xff0c;更改hello更新时间 …