分类预测 | Matlab实现WOA-LSSVM鲸鱼算法优化最小二乘支持向量机数据分类预测

news2025/1/24 9:45:40

分类预测 | Matlab实现WOA-LSSVM鲸鱼算法优化最小二乘支持向量机数据分类预测

目录

    • 分类预测 | Matlab实现WOA-LSSVM鲸鱼算法优化最小二乘支持向量机数据分类预测
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现WOA-LSSVM鲸鱼算法优化最小二乘支持向量机数据分类预测(完整源码和数据),优化参数为,优化RBF核函数gam和sig,运行环境为Matlab2018及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式资源处直接下载Matlab实现WOA-LSSVM鲸鱼算法优化最小二乘支持向量机数据分类预测(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);

P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test  = T_test;

%% LS参数设置
type        = 'c';             % 模型类型 分类
kernel_type = 'RBF_kernel';    % 线性核函数
codefct     = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue;  % 目标函数
dim = 2;             % 优化参数个数
ub  = [300, 300];  % 优化参数目标上限
lb  = [1, 1];   % 优化参数目标下限

pop = 8;             % 数量
Max_iteration = 20; % 最大迭代次数   


c = Best_pos(1);  
g = Best_pos(2);

%% 编码
[t_train,codebook,old_codebook] = code(t_train,codefct);

%% 建立模型
model = initlssvm(p_train,t_train,type,c,g,kernel_type,codefct); %SSA

%% 训练模型
model = trainlssvm(model);

%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); 



T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;

%% 优化曲线
figure
plot(curve, 'linewidth',1.5);
title('-LSSVM')
xlabel('The number of iterations')
ylabel('Fitness')
grid on;
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid

%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
    
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1605373.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小试牛刀!

1.从双倍数组中还原原数组&#xff08;力扣&#xff0c;vector&#xff09; java式c解法。 class Solution { public:vector<int> findOriginalArray(vector<int>& changed) {int n changed.size();if(n % 2 1) return {};map<int, int> mp;for(int c…

02 - Git 之命令 + 删除 + 版本控制 + 分支 + 标签 + 忽略文件 + 版本号

1 Git相关概念 1.1 以下所谈三个区&#xff0c;文件并不只是简单地在三个区转移&#xff0c;而是以复制副本的方式转移 使用 Git 管理的项目&#xff0c;拥有三个区域&#xff0c;分别是 Working area工作区&#xff08;亦称为 工作树Working Tree&#xff09;、stage area …

【Web】HTML基础

专栏文章索引&#xff1a;Web 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 目录 一、HTML介绍 1.HTML 定义 2.标签语法 3.HTML 基本骨架 4.标签的关系 5.HTML 注释 二、标签 1.排版标签 1.1 标题标签 1.2 段落标签 1.3 换行标签 1.4 水平线标签 1.5 文本格…

【Spring】之基础概念和使用

&#x1f3c0;&#x1f3c0;&#x1f3c0;来都来了&#xff0c;不妨点个关注&#xff01; &#x1f3a7;&#x1f3a7;&#x1f3a7;博客主页&#xff1a;欢迎各位大佬! 文章目录 1. Spring的概述1.1 什么是容器&#xff1f;1.2 什么是IoC&#xff1f;1.3 什么是DI&#xff1f…

(二十八)Flask之wtforms库【上手使用篇】

目录&#xff1a; 每篇前言&#xff1a;用户登录验证&#xff1a;用户注册验证&#xff1a;使用示例&#xff1a; 抽象解读使用wtforms编写的类&#xff1a;简单谈一嘴&#xff1a;开始抽象&#xff1a; 每篇前言&#xff1a; &#x1f3c6;&#x1f3c6;作者介绍&#xff1a;【…

多任务学习,在共享层,究竟在共享什么?

在多任务学习中&#xff0c;共享层所共享的主要是网络结构和参数。具体来说&#xff0c;当多个任务在共享层进行参数硬共享时&#xff0c;它们使用的是相同的网络结构&#xff08;例如三层全连接神经网络&#xff09;&#xff0c;并且这些网络层的权重&#xff08;weights&…

Java工具类:批量发送邮件(带附件)

​ 不好用请移至评论区揍我 原创代码,请勿转载,谢谢! 一、介绍 用于给用户发送特定的邮件内容,支持附件、批量发送邮箱账号必须要开启 SMTP 服务(具体见下文教程)本文邮箱设置示例以”网易邮箱“为例,其他如qq邮箱或企业邮箱均可,只要在设置中对应开启SMTP及授权码等操…

css中设置元素大小的属性block-size

block-size 是 CSS 中的一个属性&#xff0c;它用于设置元素的块级尺寸&#xff08;即元素的高度&#xff09;。这个属性是 height 和 max-height 的逻辑组合&#xff0c;允许你同时设置元素的最小和最大高度。 这些属性旨在让布局不再依赖于传统的物理方向&#xff08;如上下左…

爬虫 | 基于 Python 实现有道翻译工具

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本项目旨在利用 Python 语言实现一个简单的有道翻译工具。有道翻译是一款常用的在线翻译服务&#xff0c;能够实现多种语言的互译&#xff0c;提供高质量的翻译结果。 目录 一、项目功能 二、注意事项 三、代码解析 1. 导入…

eclipse配置SVN和Maven插件

3、 安装SVN插件 使用如下方法安装 Help–Install New Software 注意&#xff1a;目前只能安装1.8.x这个版本的SVN&#xff0c;如果使用高版本的SVN&#xff0c;在安装SVN和maven整合插件的时候就会报错&#xff0c;这应该是插件的bug。 点击Add name: subclipse location…

隐式/动态游标的创建与使用

目录 将 emp 数据表中部门 10 的员工工资增加 100 元&#xff0c;然后使用隐式游标的 %ROWCOUNT 属性输出涉及的员工数量 动态游标的定义 声明游标变量 打开游标变量 检索游标变量 关闭游标变量 定义动态游标&#xff0c;输出 emp 中部门 10 的所有员工的工号和姓名 Orac…

编程入门(四)【计算机网络基础(由一根网线连接两个电脑开始)】

读者大大们好呀&#xff01;&#xff01;!☀️☀️☀️ &#x1f525; 欢迎来到我的博客 &#x1f440;期待大大的关注哦❗️❗️❗️ &#x1f680;欢迎收看我的主页文章➡️寻至善的主页 文章目录 前言两个电脑如何互连呢&#xff1f;集线器、交换机与路由器总结 前言 当你有…

【IC前端虚拟项目】接口分析与agent组件生成

【IC前端虚拟项目】数据搬运指令处理模块前端实现虚拟项目说明-CSDN博客 到目前为止关于环境的准备工作都已经完成了,甚至验证环境的大体结构我们也已经画好了,再来看一下: 于是乎呢就可以大张旗鼓的开始咱们验证环境的搭建了!看上面这个结构图,里面除了mvu作为DUT,其他…

【C语言】冒泡排序算法详解

目录 一、算法原理二、算法分析时间复杂度空间复杂度稳定性 三、C语言实现四、Python实现 冒泡排序&#xff08;Bubble Sort&#xff09;是一种基础的排序算法。它重复地遍历要排序的数列&#xff0c;一次比较两个元素&#xff0c;如果他们的顺序错误就把他们交换过来。遍历数列…

HackMyVM-BaseME

目录 信息收集 arp nmap WEB web信息收集 gobuster hydra 目录检索 ssh 提权 get user sudo base64提权 get root 信息收集 arp ┌─[rootparrot]─[~/HackMyVM] └──╼ #arp-scan -l Interface: enp0s3, type: EN10MB, MAC: 08:00:27:16:3d:f8, IPv4: 192.168…

机器人的非接触式充电和无线充电有什么区别?

文 | BFT机器人 在日新月异的技术浪潮中&#xff0c;接触式与非接触式无线充电之间的微妙差异变得愈发重要&#xff0c;这如同在纷繁复杂的迷雾中增添了一层难以捉摸的迷离。而今&#xff0c;一些所谓的“无线”充电站纷纷涌入市场&#xff0c;它们自诩为无需线缆束缚的新时代…

在线预约家政服务小程序上门服务源码系统 带完整的安装代码包以及搭建教程

随着互联网的快速发展&#xff0c;家政服务行业也逐渐向线上化、智能化转型。为了满足广大用户的需求&#xff0c;罗峰给大家分享一款在线预约家政服务小程序上门服务源码系统。该系统不仅功能完善&#xff0c;而且操作简单&#xff0c;是您打造高效、便捷的家政服务平台的首选…

【uniapp踩坑记】——微信小程序转发保存图片

关于微信小程序转发&保存图片 微信小程序图片转发保存简单说明网络图片的转发保存base64流形式图片转发保存 已经好多年没写博客了&#xff0c;最近使用在用uniapp开发一个移动版管理后台&#xff0c;记录下自己踩过的一些坑 吃相别太难看&#xff0c;搞一堆下头僵尸号来点…

Elasticsearch Windows上安装

系列文章目录 文章目录 系列文章目录前言前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能…

python二级题目-仅使用 Python 基本语法,即不使用任何模块,编写 Python 程序计算下列数学表达式的结果并输出,小数点后保留 3 位。

x(((3**4)5*(6**7))/8)**0.5 .format 用法一&#xff1a; print({}.format(1)) 1 print(这个是format的用法{}。。。.format(3)) 这个是format的用法3 ’大括号1:{},大括号2:{},大括号3:{}‘.format(3,4,5) print(’大括号1:{},大括号2:{},大括号3:{}‘.form…