源码解读——SplitFed: When Federated Learning Meets Split Learning

news2025/1/13 19:57:36

源码地址

1. 源码概述

源码里一共包含了5个py文件

  • 单机模型(Normal_ResNet_HAM10000.py)
  • 联邦模型(FL_ResNet_HAM10000.py)
  • 本地模拟的SFLV1(SFLV1_ResNet_HAM10000.py)
  • 网络socket下的SFLV2(SFLV2_ResNet_HAM10000.py)
  • 使用了DP+PixelDP隐私技术(SL_ResNet_HAM10000.py)

使用的数据集是:HAM10000 数据集是常见色素性皮肤病变的多源皮肤图像大集合。
做的是图像分类的工作。

2. Normal_ResNet_HAM10000.py

这是一个基础模型,可以在单机上进行训练和验证(有点基础的同学应该都可以看懂)。让我们来分析一下这个文件中一些主要类和方法:

2.1 SkinData(Dataset)

自定义的数据集,继承自Dataset,主要实现

class SkinData(Dataset):
    def __init__(self, df, transform = None):
        self.df = df
        self.transform = transform
        
    def __len__(self):
        return len(self.df)
    
    def __getitem__(self, index):
        X = Image.open(self.df['path'][index]).resize((64, 64))
        y = torch.tensor(int(self.df['target'][index]))
       	// 进行数据增强
        if self.transform:
            X = self.transform(X)
        
        return X, y

2.2 ResNet18模型

def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

class ResNet18(nn.Module):

    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet18, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

2.3 训练+验证

def calculate_accuracy(fx, y):
    preds = fx.max(1, keepdim=True)[1]
    correct = preds.eq(y.view_as(preds)).sum()
    acc = correct.float()/preds.shape[0]
    return acc

#==========================================================================================================================     
def train(model, device, iterator, optimizer, criterion):
    epoch_loss = 0
    epoch_acc = 0
    model.train()
    ell = len(iterator)
    for (x, y) in iterator:
        
        x = x.to(device)
        y = y.to(device)
        optimizer.zero_grad() # initialize gradients to zero
        
        # ------------- Forward propagation ----------
        fx = model(x)
        loss = criterion(fx, y)
        acc = calculate_accuracy (fx , y)
        
        # -------- Backward propagation -----------
        loss.backward()
        optimizer.step()
        
        epoch_loss += loss.item()
        epoch_acc += acc.item()
    
    return epoch_loss / ell, epoch_acc / ell
        
def evaluate(model, device, iterator, criterion):
    epoch_loss = 0
    epoch_acc = 0
    model.eval()
    ell = len(iterator)
    
    with torch.no_grad():
        for (x,y) in iterator:
            x = x.to(device)
            y = y.to(device)
            optimizer.zero_grad()
            
            fx = model(x)       
            loss = criterion(fx, y)
            acc = calculate_accuracy (fx , y)
            
            epoch_loss += loss.item()
            epoch_acc += acc.item()
        
    return epoch_loss/ell, epoch_acc/ell

2.4 组合代码进行训练

epochs = 200	#迭代次数
LEARNING_RATE = 0.0001		#学习率
criterion = nn.CrossEntropyLoss()		#损失函数
optimizer = torch.optim.Adam(net_glob.parameters(), lr = LEARNING_RATE)		#优化器

loss_train_collect = []
loss_test_collect = []
acc_train_collect = []
acc_test_collect = []
        
start_time = time.time()    
for epoch in range(epochs):
    train_loss, train_acc = train(net_glob, device, train_iterator, optimizer, criterion)		#训练
    test_loss, test_acc = evaluate(net_glob, device, test_iterator, criterion)	#验证
    loss_train_collect.append(train_loss)		
    loss_test_collect.append(test_loss)
    acc_train_collect.append(train_acc)
    acc_test_collect.append(test_acc)
    prRed(f'Train => Epoch: {epoch} \t Acc: {train_acc*100:05.2f}% \t Loss: {train_loss:.3f}')
    prGreen(f'Test =>               \t Acc: {test_acc*100:05.2f}% \t Loss: {test_loss:.3f}')
  
elapsed = (time.time() - start_time)/60
print(f'Total Training Time: {elapsed:.2f} min')

3. FL_ResNet_HAM10000.py

接下来来解读这个文件:这个文件是一个本地模拟联邦的文件。模型大体上的代码是差不多的,让我们来看一下差异之处。

3.1 DatasetSplit

这是一个数据集,使用idxs来切分不同的数据。

class DatasetSplit(Dataset):
    def __init__(self, dataset, idxs):
        self.dataset = dataset
        self.idxs = list(idxs)

    def __len__(self):
    	# 数据的长度是idx列表的长度
        return len(self.idxs)

    def __getitem__(self, item):
        image, label = self.dataset[self.idxs[item]]
        return image, label

3.2 LocalUpdate

与训练和测试有关的客户端功能

class LocalUpdate(object):
    def __init__(self, idx, lr, device, dataset_train = None, dataset_test = None, idxs = None, idxs_test = None):
        self.idx = idx  #本地客户端编号
        self.device = device
        self.lr = lr
        self.local_ep = 1
        self.loss_func = nn.CrossEntropyLoss()
        self.selected_clients = []
        self.ldr_train = DataLoader(DatasetSplit(dataset_train, idxs), batch_size = 256, shuffle = True)
        self.ldr_test = DataLoader(DatasetSplit(dataset_test, idxs_test), batch_size = 256, shuffle = True)

    def train(self, net):
        net.train()
 		......
        return net.state_dict(), sum(epoch_loss) / len(epoch_loss), sum(epoch_acc) / len(epoch_acc)
    
    def evaluate(self, net):
        net.eval()
        .....
        return sum(epoch_loss) / len(epoch_loss), sum(epoch_acc) / len(epoch_acc)

如何生成对应的数据集的idx,即如何模拟各个客户端拥有一部分数据,通过dataset_iid(dataset_train, num_users)这个函数完成。

def dataset_iid(dataset, num_users):
    num_items = int(len(dataset) / num_users)
    dict_users, all_idxs = {}, [i for i in range(len(dataset))]
    for i in range(num_users):
    	# 随机从集合中获取num_items个idx
        dict_users[i] = set(np.random.choice(all_idxs, num_items, replace=False))
        # 从集合中删除已经分配掉的idx
        all_idxs = list(set(all_idxs) - dict_users[i])
    return dict_users

3.3 代码整合

net_glob.train()	#将模型切换为训练模式
w_glob = net_glob.state_dict()	#拷贝模型的权重
 
loss_train_collect = []
acc_train_collect = []
loss_test_collect = []
acc_test_collect = []

for iter in range(epochs):
	# 
    w_locals, loss_locals_train, acc_locals_train, loss_locals_test, acc_locals_test = [], [], [], [], []
    m = max(int(frac * num_users), 1)
    idxs_users = np.random.choice(range(num_users), m, replace = False) #生成用户idxs的序列 
    
    # 对于每一个客户端进行模型训练
    for idx in idxs_users: # each client
        local = LocalUpdate(idx, lr, device, dataset_train = dataset_train, dataset_test = dataset_test, idxs = dict_users[idx], idxs_test = dict_users_test[idx])
        # Training ------------------收集每一个客户端的w, loss_train, acc_train
        w, loss_train, acc_train = local.train(net = copy.deepcopy(net_glob).to(device))# 使用服务端的参数进行模型的训练,经过该客户端本地的数据训练后产生一个新的模型参数
        w_locals.append(copy.deepcopy(w))
        loss_locals_train.append(copy.deepcopy(loss_train))
        acc_locals_train.append(copy.deepcopy(acc_train))
        # Testing -------------------收集每一个客户端的loss_test, acc_test
        loss_test, acc_test = local.evaluate(net = copy.deepcopy(net_glob).to(device))
        loss_locals_test.append(copy.deepcopy(loss_test))
        acc_locals_test.append(copy.deepcopy(acc_test))
        

    # Federation process 聚合各个客户端的w
    w_glob = FedAvg(w_locals)
    print("------------------------------------------------")
    print("------ Federation process at Server-Side -------")
    print("------------------------------------------------")
    
    # update global model --- copy weight to net_glob -- distributed the model to all users //更新全局模型
    net_glob.load_state_dict(w_glob)
    
    # Train/Test accuracy	添加训练和测试的准确率
    acc_avg_train = sum(acc_locals_train) / len(acc_locals_train)
    acc_train_collect.append(acc_avg_train)
    acc_avg_test = sum(acc_locals_test) / len(acc_locals_test)
    acc_test_collect.append(acc_avg_test)
    
    # Train/Test loss	添加训练和测试的loss
    loss_avg_train = sum(loss_locals_train) / len(loss_locals_train)
    loss_train_collect.append(loss_avg_train)
    loss_avg_test = sum(loss_locals_test) / len(loss_locals_test)
    loss_test_collect.append(loss_avg_test)
    
    print('------------------- SERVER ----------------------------------------------')
    print('Train: Round {:3d}, Avg Accuracy {:.3f} | Avg Loss {:.3f}'.format(iter, acc_avg_train, loss_avg_train))
    print('Test:  Round {:3d}, Avg Accuracy {:.3f} | Avg Loss {:.3f}'.format(iter, acc_avg_test, loss_avg_test))
    print('-------------------------------------------------------------------------')
#===================================================================================     
print("Training and Evaluation completed!")    

4. SFLV1_ResNet_HAM10000.py

这个文件是论文中主要提到的模型,实现了拆分学习和联邦学习的结合。

4.1 ResNet18_client_side

这段代码定义了客户端部分的数据提取部分:

class ResNet18_client_side(nn.Module):
    def __init__(self):
        super(ResNet18_client_side, self).__init__()
        self.layer1 = nn.Sequential (
                nn.Conv2d(3, 64, kernel_size = 7, stride = 2, padding = 3, bias = False),
                nn.BatchNorm2d(64),
                nn.ReLU (inplace = True),
                nn.MaxPool2d(kernel_size = 3, stride = 2, padding =1),
            )
        self.layer2 = nn.Sequential  (
                nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1, bias = False),
                nn.BatchNorm2d(64),
                nn.ReLU (inplace = True),
                nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1),
                nn.BatchNorm2d(64),              
            )
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
        
    def forward(self, x):
        resudial1 = F.relu(self.layer1(x))
        out1 = self.layer2(resudial1)
        out1 = out1 + resudial1 # adding the resudial inputs -- downsampling not required in this layer
        resudial2 = F.relu(out1)
        return resudial2

4.2 ResNet18_server_side

我们可以看出客户端的模型+服务器的模型才是一个完整的模型

class ResNet18_server_side(nn.Module):
    def __init__(self, block, num_layers, classes):
        super(ResNet18_server_side, self).__init__()
        self.input_planes = 64
        self.layer3 = nn.Sequential (
                nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1),
                nn.BatchNorm2d(64),
                nn.ReLU (inplace = True),
                nn.Conv2d(64, 64, kernel_size = 3, stride = 1, padding = 1),
                nn.BatchNorm2d(64),       
                )
        self.layer4 = self._layer(block, 128, num_layers[0], stride = 2)
        self.layer5 = self._layer(block, 256, num_layers[1], stride = 2)
        self.layer6 = self._layer(block, 512, num_layers[2], stride = 2)
        self. averagePool = nn.AvgPool2d(kernel_size = 7, stride = 1)
        self.fc = nn.Linear(512 * block.expansion, classes)
        
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
        
        
    def _layer(self, block, planes, num_layers, stride = 2):
        dim_change = None
        if stride != 1 or planes != self.input_planes * block.expansion:
            dim_change = nn.Sequential(nn.Conv2d(self.input_planes, planes*block.expansion, kernel_size = 1, stride = stride),
                                       nn.BatchNorm2d(planes*block.expansion))
        netLayers = []
        netLayers.append(block(self.input_planes, planes, stride = stride, dim_change = dim_change))
        self.input_planes = planes * block.expansion
        for i in range(1, num_layers):
            netLayers.append(block(self.input_planes, planes))
            self.input_planes = planes * block.expansion
            
        return nn.Sequential(*netLayers)
        
    
    def forward(self, x):
        out2 = self.layer3(x)
        out2 = out2 + x          # adding the resudial inputs -- downsampling not required in this layer
        x3 = F.relu(out2)
        x4 = self. layer4(x3)
        x5 = self.layer5(x4)
        x6 = self.layer6(x5)
        x7 = F.avg_pool2d(x6, 7)
        x8 = x7.view(x7.size(0), -1) 
        y_hat =self.fc(x8)
        
        return y_hat

4.3 服务器端的训练函数

# fx_client 客户端提取后的输出
# y	对应的标签
# l_epoch_count epoch的总数
# l_epoch	当前是第i轮epoch
# idx	客户端标识
# len_batch	batch的大小
def train_server(fx_client, y, l_epoch_count, l_epoch, idx, len_batch):	
	#声明全局变量,方便直接进行修改外部同名变量 
    global net_model_server, criterion, optimizer_server, device, batch_acc_train, batch_loss_train, l_epoch_check, fed_check
    global loss_train_collect, acc_train_collect, count1, acc_avg_all_user_train, loss_avg_all_user_train, idx_collect, w_locals_server, w_glob_server, net_server
    global loss_train_collect_user, acc_train_collect_user, lr
    
    net_server = copy.deepcopy(net_model_server[idx]).to(device)#根据idx获取对应的服务端的模型
    net_server.train()
    optimizer_server = torch.optim.Adam(net_server.parameters(), lr = lr)
    # train and update
    optimizer_server.zero_grad()
  	
    fx_client = fx_client.to(device)# 将客户端返回的中间数据放入device
    y = y.to(device)
    #---------forward prop模型推理-------------
    fx_server = net_server(fx_client)
    # calculate loss
    loss = criterion(fx_server, y)
    # calculate accuracy
    acc = calculate_accuracy(fx_server, y)
    #--------backward prop--------------
    loss.backward()
    dfx_client = fx_client.grad.clone().detach()#获得模型的梯度并返回
    optimizer_server.step()
    
    batch_loss_train.append(loss.item())
    batch_acc_train.append(acc.item())
    # 更新当前轮次对应的server-side模型
    net_model_server[idx] = copy.deepcopy(net_server)
    # count1: to track the completion of the local batch associated with one client
    count1 += 1
    if count1 == len_batch:# 判断是否完成一个本地轮次:当count1等于len_batch时,计算本批次平均精度和损失,清空训练损失和精度集合,重置计数器,并打印训练信息。
        acc_avg_train = sum(batch_acc_train)/len(batch_acc_train)
        loss_avg_train = sum(batch_loss_train)/len(batch_loss_train)
        
        batch_acc_train = []
        batch_loss_train = []
        count1 = 0
        
        prRed('Client{} Train => Local Epoch: {} \tAcc: {:.3f} \tLoss: {:.4f}'.format(idx, l_epoch_count, acc_avg_train, loss_avg_train))
        
        # 保存当前模型权重:保存当前服务器端模型权重到w_server    
        w_server = net_server.state_dict()      
        
        if l_epoch_count == l_epoch-1:# 判断是否完成一个一定数量的epoch
        
            l_epoch_check = True     
            #将当前模型权重添加到本地权重列表w_locals_server
            w_locals_server.append(copy.deepcopy(w_server))
            #计算并保存当前客户端最后一个批次的精度和损失(非平均值)
            acc_avg_train_all = acc_avg_train
            loss_avg_train_all = loss_avg_train
            loss_train_collect_user.append(loss_avg_train_all)
            acc_train_collect_user.append(acc_avg_train_all)
            
            # 将当前客户端索引添加到用户索引集合idx_collect                      
            if idx not in idx_collect:
                idx_collect.append(idx) 
        
        # 如果已收集到所有用户的索引,设置fed_check为True,表示触发联邦过程
        if len(idx_collect) == num_users:
            fed_check = True                                                  # to 
            # 聚合通过各个客户端训练得到的服务器模型                       
            w_glob_server = FedAvg(w_locals_server)   
            # 服务器端的全局模型更新
            net_glob_server.load_state_dict(w_glob_server)    
            net_model_server = [net_glob_server for i in range(num_users)]
            
            w_locals_server = []
            idx_collect = []
            
            acc_avg_all_user_train = sum(acc_train_collect_user)/len(acc_train_collect_user)
            loss_avg_all_user_train = sum(loss_train_collect_user)/len(loss_train_collect_user)
            
            loss_train_collect.append(loss_avg_all_user_train)
            acc_train_collect.append(acc_avg_all_user_train)
            
            acc_train_collect_user = []
            loss_train_collect_user = []
            
    # send gradients to the client               
    return dfx_client

4.4 Client

class Client(object):
	# net_client_mode	客户端模型
	# idx	客户端id
	# lr	学习率
	# device	设备
	# dataset_train	训练的数据集	
	# dataset_test	测试的数据集
	# idxs	训练数据的子集
	# idxs_test	测试数据的子集
    def __init__(self, net_client_model, idx, lr, device, dataset_train = None, dataset_test = None, idxs = None, idxs_test = None):
        self.idx = idx
        self.device = device
        self.lr = lr
        self.local_ep = 1	#定义了本地的epoch
        self.ldr_train = DataLoader(DatasetSplit(dataset_train, idxs), batch_size = 256, shuffle = True)
        self.ldr_test = DataLoader(DatasetSplit(dataset_test, idxs_test), batch_size = 256, shuffle = True)
        
    def train(self, net):
        net.train()
        optimizer_client = torch.optim.Adam(net.parameters(), lr = self.lr) #客户端的优化器
        
        for iter in range(self.local_ep):
            len_batch = len(self.ldr_train)  #获取batch的长度
            for batch_idx, (images, labels) in enumerate(self.ldr_train):
                images, labels = images.to(self.device), labels.to(self.device)
                optimizer_client.zero_grad()
                fx = net(images) # 正向传播
                client_fx = fx.clone().detach().requires_grad_(True) # 客户端提取的数据信息
                # 获得反向传播的梯度
                dfx = train_server(client_fx, labels, iter, self.local_ep, self.idx, len_batch)
                #--------backward prop -------------
                fx.backward(dfx)	# 在客户端继续反向传播
                optimizer_client.step()
        #  返回更新后的网络参数        
        return net.state_dict() 
    
    def evaluate(self, net, ell):
        net.eval()
           
        with torch.no_grad():
            len_batch = len(self.ldr_test)
            for batch_idx, (images, labels) in enumerate(self.ldr_test):
                images, labels = images.to(self.device), labels.to(self.device)
                #---------forward prop-------------
                fx = net(images) # 正向传播
                evaluate_server(fx, labels, self.idx, len_batch, ell)
            
        return   

4.5 整合技术

在这里插入图片描述

#------------ Training And Testing  -----------------
net_glob_client.train()
# 拷贝权重
w_glob_client = net_glob_client.state_dict()
# 联邦学习n轮
for iter in range(epochs):
    m = max(int(frac * num_users), 1)
    # 生成每个用户所拥有的数据的idx
    idxs_users = np.random.choice(range(num_users), m, replace = False)
    w_locals_client = []
      
    for idx in idxs_users:
        local = Client(net_glob_client, idx, lr, device, dataset_train = dataset_train, dataset_test = dataset_test, idxs = dict_users[idx], idxs_test = dict_users_test[idx])
        # Training ------------------
        # 训练,传给服务端,反向传播,更新后获得新的客户端模型参数
        w_client = local.train(net = copy.deepcopy(net_glob_client).to(device))
        w_locals_client.append(copy.deepcopy(w_client))
        
        # Testing -------------------
        local.evaluate(net = copy.deepcopy(net_glob_client).to(device), ell= iter)
        
    # 对客户端的模型参数求平均
    w_glob_client = FedAvg(w_locals_client)   
    
    # 更新客户端的全局模型
    net_glob_client.load_state_dict(w_glob_client)    
print("Training and Evaluation completed!")    

5.总结

优点:

  • 代码实现了分割学习和联邦学习的结合模拟实验
  • 代码注释多,结构清晰

缺点:

  • 仅仅只是一个单机实验,没有在真实的多机环境中进行实验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1603882.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL的内外连接

📟作者主页:慢热的陕西人 🌴专栏链接:MySQL 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 本博客主要内容主要介绍了MySQL中的内外连接 文章目录 MySQL的内外连接…

如何用ChatGPT进行论文撰写?

原文链接:如何用ChatGPT进行论文撰写?https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247601619&idx1&snb686fbe87dedfac2df3a6afe780b2ffe&chksmfa820c34cdf5852251dca64597024ea62ddbde280086535ec251f4b62b848d9f9234688384e6…

C语言——字符函数和字符串函数

1.assert断言&#xff08;判断程序运行时是否符合条件&#xff09; <assert.h>头文件定义了宏assert&#xff08;&#xff09;&#xff0c;⽤于在运⾏时确保程序符合指定条件&#xff0c;如果不符合&#xff0c;就报 错终⽌运⾏。这个宏常常被称为“断⾔”。 assert() …

带缓存的输入输出流(I/O)

文章目录 前言一、带缓冲的输入输出流是什么&#xff1f;二、使用方法 1.BufferedInputStream与BufferedOutputStream类2.BufferedReader与BufferedWriter类总结 前言 输入输出流可以视为&#xff0c;从A点把货物搬运至B点。那么带缓冲的意思可以视为用货车把A点的货物搬运至B点…

Chatgpt掘金之旅—有爱AI商业实战篇|品牌故事业务|(十六)

演示站点&#xff1a; https://ai.uaai.cn 对话模块 官方论坛&#xff1a; www.jingyuai.com 京娱AI 一、AI技术创业在品牌故事业务有哪些机会&#xff1f; 人工智能&#xff08;AI&#xff09;技术作为当今科技创新的前沿领域&#xff0c;为创业者提供了广阔的机会和挑战。随…

象棋教学辅助软件介绍

背景 各大象棋软件厂商都有丰富的题目提供训练&#xff0c;但是其AI辅助要么太弱&#xff0c;要么要付费解锁&#xff0c;非常不适合我们这些没有赞助的业余棋手自行训练&#xff0c;于是我需要对其进行视觉识别&#xff0c;和AI训练&#xff0c;通过开启这个辅助软件&#xf…

学习了解大模型的四大缺陷

由中国人工智能学会主办的第十三届吴文俊人工智能科学技术奖颁奖典礼暨2023中国人工智能产业年会于2024年4月14日闭幕。 会上&#xff0c;中国工程院院士、同济大学校长郑庆华认为&#xff0c;大模型已经成为当前人工智能的巅峰&#xff0c;大模型之所以强&#xff0c;是依托了…

【iOS开发】(二)react Native基础语法+样式+布局20240417

【IOS开发】 前言&#xff1a;&#xff08;一&#xff09;我们已经搭建好了基础环境&#xff0c;和iOS环境&#xff0c;并创建和在模拟器上成功运行了一个app&#xff0c;mywdm。 目录标题 一&#xff0c; 如何进行模拟器调试二&#xff0c;基础语法&#xff1a;1 掌握reactjs…

spring boot: 使用MyBatis从hive中读取数据

一、hive表&#xff1a; 启动hiveserver2 二、添加mybatis starter和hive依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instan…

微信小程序展示倒计时

html <view class"countdown"> <text>倒计时&#xff1a;</text> <text wx:for"{{countdown}}" wx:key"index">{{item}}</text> </view> ts data: {countdown: [], // 存放倒计时数组 targetTime:…

Table表格(关于个人介绍与图片)

展开行&#xff1a; <el-table :data"gainData" :border"gainParentBorder" style"width: 100%"><el-table-column type"expand"><template #default"props"><div m"4"><h3>工作经…

NVM下载、NVM配置、NVM常用命令

NVM(nodejs版本管理切换工具)下载、配置、常用命令 0、NVM常用命令 nvm off // 禁用node.js版本管理(不卸载任何东西) nvm on // 启用node.js版本管理 nvm install <version> // 安装node.js的命名 version是版本号 例…

谈谈我的实习生活

距离实习已经过去快一年了&#xff0c;说真的&#xff0c;很多关于实习的事情我都已经忘记了。今天正好我有空&#xff0c;就想着写一些东西&#xff0c;思来想去&#xff0c;就想着要不把实习的生活给记录下来&#xff0c;就当给自己留一个回忆&#xff0c;毕竟这也是我人生中…

春秋云境:CVE-2022-32991[漏洞复现]

从CVE官网查询该漏洞相关信息 该漏洞是由于welcome.php中的eid参数包含了SQL注入漏洞 则我们的目标就在于寻找welcome.php地址以及相关的可注入eid参数 开启靶机 先在页面正常注册、登录一个账号。密码随便填 进入了home目录&#xff0c;这里有三个话题可以选择开启 随便选…

AI大模型探索之路-应用篇15:GLM大模型-ChatGLM3-6B私有化本地部署

目录 前言 一、ChatGLM3-6B 简介说明 二、ChatGLM3-6B 资源评估 三、购买云服务器 四、git拉取GLM 五、pip安装依赖 六、运行测试 七、本地部署安装 总结 前言 ChatGLM3-6B 是 OpenAI 推出的一款强大的自然语言处理模型&#xff0c;它在前两代模型的基础上进行了优化和…

【数据工具】ArcGIS批量出图工具箱

工具下载链接&#xff1a;数据下载链接 我们在使用Arcgis制图的过程中&#xff0c;经常会遇到需要大量出图的情况&#xff0c;如何将做好的图批量导出jpg是一件令人头疼的问题。 今天小编就给大家分享俩个ArcGIS批量出图的工具箱&#xff0c;一个可以批量导出图层为jpg&#…

每日OJ题_完全背包④_力扣279. 完全平方数(一维和二维)

目录 力扣279. 完全平方数 问题解析 解析代码 优化代码&#xff08;相同子问题分析和滚动数组&#xff09; 力扣279. 完全平方数 279. 完全平方数 难度 中等 给你一个整数 n &#xff0c;返回 和为 n 的完全平方数的最少数量 。 完全平方数 是一个整数&#xff0c;其值…

A Geolocation Databases Study(2011年)第一部分

下载地址:A Geolocation Databases Study | IEEE Journals & Magazine | IEEE Xplore 被引次数:195 Shavitt Y, Zilberman N. A geolocation databases study[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(10): 2044-2056. Abstract 互联网IP地址的…

49.HarmonyOS鸿蒙系统 App(ArkUI)Tab导航组件的使用

HarmonyOS鸿蒙系统 App(ArkUI)Tab导航组件的使用 图片显示 Row() {Image($r(app.media.leaf)).height(100).width(100)Image($r(app.media.icon)).height(100).width(100) } 左侧导航 import prompt from ohos.prompt; import promptAction from ohos.promptAction; Entry C…

C语言通过键盘输入给结构体内嵌的结构体赋值——指针法

1 需求 以录入学生信息&#xff08;姓名、学号、性别、出生日期&#xff09;为例&#xff0c;首先通过键盘输入需要录入的学生的数量&#xff0c;再依次输入这些学生的信息&#xff0c;输入完成后输出所有信息。 2 代码 #include<stdio.h> #include<stdlib.h>//…