EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网多头注意力多变量时间序列预测

news2025/1/15 19:49:07

EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网多头注意力多变量时间序列预测

目录

    • EI级 | Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网多头注意力多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网多头注意力多变量时间序列预测;

2.运行环境为Matlab2023及以上;

3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

4.data为数据集,main1-VMD.m、main2-VMD-TCN-LSTM-MATT.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。在时序预测任务中,注意力机制可以用于对序列中不同时间步之间的相关性进行建模.
首先,VMD技术用于对原始时间序列数据进行预处理。通过VMD,可以将复杂的时间序列信号分解为若干个模态分量,从而提取出原始数据中的有用信息和特征。这有助于降低数据的复杂性,并使得后续的特征提取和预测过程更加高效。

接下来,TCN用于进一步提取时间序列数据中的局部特征。TCN具有扩张因果卷积结构,能够捕捉序列中的长期依赖关系,并通过卷积操作提取出重要的局部特征。这些特征对于后续的预测过程至关重要。

然后,LSTM网络被引入以处理序列数据中的短期和长期依赖关系。能够充分利用序列数据的时序信息。通过将TCN提取的特征输入到LSTM网络中,可以进一步提高模型的预测能力。

最后,多头注意力机制(MATT)被整合到模型中,以进一步提高预测精度。MATT允许模型对序列的不同部分进行注意力运算,从而更准确地捕捉关键信息。通过将独立的注意力输出串联起来并线性地转化为预期维度,MATT能够帮助模型更好地理解输入序列的复杂结构和依赖关系。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现VMD-TCN-LSTM-MATT变分模态分解卷积长短期记忆神经网多头注意力多变量时间序列预测



%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res =xlsread('data.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例

num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

f_ = size(P_train, 1);                  % 输入特征维度

%%  数据归一化
layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);

outputName = layer.Name;

for i = 1:numBlocks
    dilationFactor = 2^(i-1);
    
    layers = [
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)
        layerNormalizationLayer
        dropoutLayer(dropoutFactor) 
        % spatialDropoutLayer(dropoutFactor)
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")
        layerNormalizationLayer
        reluLayer
        dropoutLayer(dropoutFactor) 
        additionLayer(2,Name="add_"+i)];

    % Add and connect layers.
    lgraph = addLayers(lgraph,layers);
    lgraph = connectLayers(lgraph,outputName,"conv1_"+i);

    % Skip connection.
    if i == 1
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end
    
    % Update layer output name.
    outputName = "add_" + i;
end


tempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1603696.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

tcp bbr pacing 的对与错

前面提到 pacing 替代 burst 是大势所趋,核心原因就是摩尔定律逐渐失效,主机带宽追平交换带宽,交换机不再能轻易吸收掉主机突发,且随着视频类流量激增,又不能以大 buffer 做带宽后备。因此,主机必须 pacing…

根据 Excel 列生成 SQL

公司有个历史数据刷数据的需求, 开发功能有点浪费, 手工刷数据有点慢, 所以研究了下 excel 直接生成 SQL, 挺好用, 记录一下; 例如这是我们的数据, 要求把创建时间和完成时间刷进数据库中, 工单编号唯一 Excel 公式如下: "UPDATE service_order SET create…

Ubuntu修改DNS

【永久修改DNS】 临时修改DNS的方法是在 /etc/resolv.conf 添加:nameserver 8.8.8.8 nameserver 8.8.8.8 注意到/etc/resolv.conf最上面有这么一行: DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN 说明重启之后这个文件会被自动…

2024 数据技术嘉年华大会的总结报告

2024数据技术嘉年华大会已经结束,很多朋友做出了不同视角的总结,作为大会最初的发起者,我需要做出一些回应。 这是一次年轻人担纲组织的成功的大会本次的嘉年华大会,组织者换成了墨天轮社区的90后群体,我想他们可能更了…

【小白学机器学习13】一文理解假设检验的反证法,H0如何设计的,什么时候用左侧检验和右侧检验,等各种关于假设检验的基础知识

目录 前言: 目标 1 什么叫 假设检验 1.1 假设检验的定义 1.1.1 来自百度百科 1.1.2 维基百科 1.2 假设检验的最底层逻辑:是反证法思想 1.3 假设检验的底层构造:小概率反证法思想 2 什么叫反证法 2.1 反证法的概念 2.1.1 来自百度…

java导出数据到excel表中

java导出数据到excel表中 环境说明项目结构1.controller层2.service层3.实现层4.工具类:ExcelUtil.java5.ProductModel.java类 使用的Maven依赖postman请求展示,返回内容需要前端接收浏览器接收说明(如果下载下来的为zip类型,记得…

芯片数字后端设计入门书单推荐(可下载)

数字后端设计,作为数字集成电路设计的关键环节,承担着将逻辑设计转化为物理实现的重任。它不仅要求设计师具备深厚的电路理论知识,还需要对EDA工具有深入的理解和熟练的操作技能。尽管数字后端工作不像前端设计那样频繁涉及代码编写&#xff…

字符串拆分优化算法

字符串拆分优化算法 问题背景算法设计思路伪代码实现C语言代码实现 详细解释结论 在面对字符串拆分问题时,我们的目标是找到一种最优的拆分顺序,以使得总的拆分代价最小。这个问题可以通过动态规划算法来解决。在本文中,我们将详细介绍这个问…

uniapp picker 多列选择器用法

uniapp picker 多列选择器联动筛选器交互处理方法, uniapp 多列选择器 mode"multiSelector" 数据及筛选联动交互处理, 通过接口获取数据,根据用户选择当前列选项设置子列数据,实现三级联动效果, 本示例中处…

联想小新Air14-2019锐龙版更换硬盘

首先打下D面所有螺丝(内六角螺丝,需要准备螺丝刀),然后从下方翘起整个D面打开如下图 原装为2280长度的海力士硬盘,有空余的2242长度硬盘位 更换前断电,建议拆下电池(扣下电池排线后不好安装&am…

【解决去除springboot-内嵌tomcat的异常信息显示】去掉版本号和异常信息

调用这个,能复现tomcat的报错 http://localhost:8182/defaultroot/DownloadServlet?modeType2&pathhtml&FileName…\login.jsp&name123&fiewviewdownload2&cdinline&downloadAll2 springboot项目如何隐藏? springboot内嵌了to…

【IoTDB 线上小课 02】开源增益的大厂研发岗面经

还有友友不知道我们的【IoTDB 视频小课】系列吗? 关于 IoTDB,关于物联网,关于时序数据库,关于开源...给我们 5 分钟,持续学习,干货满满~ 5分钟学会 大厂研发岗面试 之前的第一期小课,我们听了 I…

康耐视visionpro-CogHistogramTool操作操作工具详细说明

CogHistogramTool]功能说明: 对图像区域中的像素值进行灰度值统计 CogHistogramTool操作说明: ①.打开工具栏,双击或点击鼠标拖拽添加CogHistogramTool工具 2.添加输入图像,点击鼠标右键“链接到”或以连线拖拽的方式选择相应输入…

Dual-AMN论文阅读

Boosting the Speed of Entity Alignment 10: Dual Attention Matching Network with Normalized Hard Sample Mining 将实体对齐速度提高 10 倍:具有归一化硬样本挖掘的双重注意力匹配网络 ABSTRACT 寻找多源知识图谱(KG)中的等效实体是知识图谱集成的关键步骤&…

Real3DPortrait照片对口型,数字人,音频/视频驱动数字人

先看效果 上传一张图片和一段音频,照片如下: 合成后效果如下: 照片对口型-音频驱动 支持音频驱动和视频驱动,视频可以使照片有参照视频中的口型和和动作。 项目地址 https://github.com/yerfor/Real3DPortrait 我的环境 win…

【C语言回顾】函数

前言1. 函数的概念和分类2.库函数3. 自定义函数3.1 自定义函数的简单介绍3.2 自定义函数举例 4. 形参和实参4.1 形参4.2 实参4.3 形参和实参的关系4.3.1 理解4.3.2 举例代码和调试 5. 嵌套函数和链式访问5.1 嵌套函数5.2 链式访问 6. 函数的声明和定义6.1 单个文件6.2 多个文件…

【活动通知】COC 成都 CMeet 系列:2024 WTM 社区(国际妇女节)IWD 活动!

文章目录 前言一、关于 2024 WTM IWD 社区活动二、时间地点三、活动议程及报名方式四、分享嘉宾及主题信息4.1、李然——点燃创造力,重塑未来4.2、何静——乘风破浪,与 AI 的过去、现在、未来式4.3、晓丽老师——用 AI 给女性插上飞翔的翅膀 五、CSDN 成…

小成本搏大流量:微信/支付宝小程序搜索排名优化

随着移动互联网的快速发展,小程序已成为企业和个人开发者重要的流量入口和业务承载平台。而小程序搜索排名则是影响小程序曝光量、用户获取及业务转化的关键因素。小柚在本文和大家探讨如何制定有效的优化方案,提升小程序在搜索结果中的排名。 首先跟我…

2023年图灵奖颁发给艾维·维格森(Avi Wigderson),浅谈其计算复杂性理论方面做出的重要贡献

Avi Wigderson是一位以色列计算机科学家,他在计算复杂性理论方面做出了重要的贡献,并对现代计算产生了深远的影响。 Wigderson的主要贡献之一是在证明计算复杂性理论中的基本问题的困难性方面。他证明了许多经典问题的困难性,如图论中的图同构…

如何使用Postgres的扩展(如PostGIS)来支持地理空间数据

文章目录 解决方案1. 安装PostGIS扩展2. 创建地理空间数据表3. 插入地理空间数据4. 进行地理空间查询 示例代码 在PostgreSQL中,我们可以使用扩展来增强数据库的功能。对于地理空间数据,PostGIS是一个特别有用的扩展,它提供了对地理对象&…