C++教你如何模拟实现string,如何实现string写时拷贝

news2025/1/18 6:06:03

文章目录

  • 前言
  • 成员变量
  • 默认成员函数
    • 默认构造函数
    • 拷贝构造函数
    • 析构函数
    • 赋值运算符重载
  • 容量相关函数(Capacity)
    • reserve函数
    • resize函数
    • size函数
    • capacity 函数
    • clear函数
  • 修改函数(Modifiers)
  • swap函数
    • insert函数
      • 字符插入
      • 字符串插入
    • append函数
    • push_back函数
    • erase函数
    • +=重载
  • 元素获取函数(Element access)
  • operator[]
  • 操作函数(String operations)
    • c_str函数
    • substr函数
    • find函数
  • 运算符重载
    • 流插入运算符<<重载
    • 流提取运算符>>重载
  • 完整代码
  • 写实拷贝
    • 写时拷贝完整代码

前言

  本文将要对STL容器string进行模拟实现,将要实现string常用构造函数,析构函数,拷贝构造函数以及常用增删查改接口,介绍如何通过函数复用以达到简化代码,如何通过写实拷贝提高程序效率,通过模拟实现达到加深对string的理解,提高自身编程技巧的效果。

注:本文在读者拥有string相关知识储备的基础下更易于理解,可跳转链接阅读博主的另一篇文章掌握如何使用string后再来阅读


成员变量

	private:		
		char* _str=nullptr;//字符串
		size_t _capacity=0;//容量
		size_t _size=0;//有效字符个数
		static const size_t npos;
		//static const size_t npos=-1  vs下int类型支持给static和const同时修饰的变量用缺省值

默认成员函数

默认构造函数

  默认构造函数(无参构造函数)是构造一个空的字符串。

        string()
			:_str(new char[1])
			, _capacity(0)
			, _size(0)
		{
			_str[0] = '\0';
		}

  像上面这样写如何?可以,但是可以更简洁一些。

  像下面这样写更加简洁并且好处在于C-string构造函数可以同时担任默认构造函数与C-string构造函数的角色,这一点利用了语言的语法规则,如果我们显示定义构造函数后编译器则不会再生成默认构造函数

		string(const char* str="")//对象实例化不传递参数则默认用空字符串拷贝构造
		{
			_size = strlen(str);
			_capacity = _size;
			_str = new char[_capacity + 1];
			strcpy(_str, str);
		}

  注:实现string(const char* str=“”)后不可以再显示实现默认构造函数,否则会造成调用歧义。
  在调用方面,如果我们想要实例化一个空字符串的string对象要以以下方式调用

string s1;

  绝对不可以用以下的方式调用,错误示例如下:
  在这种情况下编译器会把它识别为函数声明

string s1();

拷贝构造函数

  拷贝构造函数是用一个类对象实例化另一个类对象

		string(const string& str)
		{
			_size = str._size;
			_capacity = str._capacity;
			_str = str._str;
		}

  如果以以上方式编写后进行调用会发生什么
  在调用之前我们先实现一个方便我们观察运行时现象的析构函数

析构函数

  清理对象占用内存资源

		~string()
		{
			delete[] _str;
			_str = nullptr;
			_size = 0;
			_capacity = 0;
			//cout<<~string()<<endl;此语句仅为观察使用
		}

  运行程序在这里插入图片描述
  监视窗口在这里插入图片描述

  RUN:运行错误
在这里插入图片描述   以上为典型浅拷贝引起的delete内存释放错误,浅拷贝使得两个对象共享同一块内存资源,在内存释放时对同一内存空间进行多次释放引起错误。
  默认拷贝构造函数同样是浅拷贝,仅对对象的成员变量的值进行拷贝。

   什么是浅拷贝?
  浅拷贝:也称位拷贝,编译器只是将对象中的值拷贝过来。如果对象中管理资源,最后就会导致多个对象共享同一份资源,当一个对象销毁时就会将该资源释放掉,而此时另一些对象不知道该资源已经被释放,以为还有效,所以当继续对资源进项操作时,就会发生发生了访问违规。其实我们可以采用深拷贝解决浅拷贝问题,即:每个对象都有一份独立的资源,不要和其他对象共享。

  什么是深拷贝

深拷贝是指在进行对象拷贝时,不仅复制对象本身的成员变量,还复制对象所指向的动态分配的资源(例如堆内存)到新的对象中。这意味着拷贝后的对象和原对象拥有独立的资源副本,彼此之间不会相互影响。
当对象中含有动态分配的资源,如指针指向的内存块,或者其他动态分配的资源(文件句柄、网络连接等),进行深拷贝是非常重要的,以避免多个对象共享同一块资源导致释放重复、悬挂指针(悬挂指针:指的是一个指针变量指向了曾经被分配的内存地址,但该内存已经被释放或者回收了。在这种情况下,指针仍然指向原来的内存地址,但那个地址现在可能已经被操作系统重新分配给了其他程序或变量,或者已经被标记为不可用。)等问题。
如果一个类中涉及到资源的管理,其拷贝构造函数、赋值运算符重载以及析构函数必须要显式给出。一般情况都是按照深拷贝方式提供

  拷贝构造正确编写方法

		string(const string& str)
		{
			_str = new char[str._capacity + 1];
			strcpy(_str, str._str);
			_size = str._size;
			_capacity = str._capacity;
		}

  通过函数复用进行优化

		void swap(string& str)//交换对象内容
		{
			std::swap(_size, str._size);
			std::swap(_capacity, str._capacity);
			std::swap(_str, str._str);
		}
		string(const string& str)
		:_str(nullptr)//_str用nullptr初始化是为了确保与之交换的指针不会成为野指针,导致不必要错误
        ,_size(0)
        ,_capacity(0)
		{
			string temp(str._str);
			swap(temp);
			//this->swap(temp);编译器为每个非静态的成员函数配备一个this指针
			//这个this指针可以显示使用,也可以不显示使用
		}

  这样设计的原理是调用C-string构造函数后再交换两个对象的内容,temp对象出作用域之后自动销毁。

  这种方法虽然简化了代码但存在着一定问题,像_size 与_capacity的大小可能与被拷贝对象的值不相同,但问题可忽略。
  关于为什么不使用标准库的swap函数进行数据交换
   在C++之前swap是以下形式实现
在这里插入图片描述   它首先会拷贝构造一个对象,然后再进行赋值拷贝,这种实现方法十分低效
  C++11之后新增的运行移动语义使得其实现更高效,如果使用C++之后的swap,它的效率与我们模拟实现的方法的效率相比更高效,它省去了一切资源的开辟。
  此内容需要大篇幅讲解才能理清逻辑,因本文重点不在此,故不进行详细讲解。在这里插入图片描述

赋值运算符重载

		string& operator =(const string& s)
		{
			if (this != &s)//如果“自己”给“自己”赋值则直接跳过
			{
				char* temp = new char[s._capacity + 1];
				strcpy(temp, s._str);
				delete[] _str;
				_str = temp;
				_size = s._size;
				_capacity = s._capacity;
			}
			return *this;
		}

  优化

		string& operator=(const string& s)
		{
			if (this != &s)
			{
				string temp(s);
				swap(temp);
			}
			return *this;
		}

  再优化

		string& operator=(string s)
		{
			swap(s);
			return *this;
		}

  通过值拷贝的方式传递参数,直接生成一个临时对象,再交换对象内容,达到简化代码的效果。


容量相关函数(Capacity)

reserve函数

  根据Windows平台下的reserve规则

n > _capacity时对对象的容量进行扩容
n<=_capacity时不对对象的容量进行修改

		void reserve(size_t n)
		{
			if (n > _capacity)
			{
				char* tmp = new char[n + 1];
				strcpy(tmp, _str);
				delete[] _str;

				_str = tmp;
				_capacity = n;
			}
		}

  开辟新空间,转移数据,释放原空间,修改成员变量

resize函数

  根据Windows平台下的reserve规则

n>_size
  首先判断n > _capacity是否成立,成立则首先进行扩容操作
  再将[_size,n)区间内容填入指定字符ch
n<=_size时对对象的有效字符进行缩减,将有效字符缩减至指定个数

		void resize(size_t n, char ch = '\0')
		{
			if (n > _size)
			{
				reserve(n);
				for (int i = _size; i < n; ++i)
				{
					_str[i] = ch;
				}
			}
			_str[n] = '\0';//必须给_str[n]赋值'\0',以做字符串结束标志
			_size = n;
		}

size函数

  返回字符串有效字符长度

size_t size() const
{
	return _size;
}

capacity 函数

  返回空间总大小

size_t capacity() const
{
	return _capacity;
}

clear函数

		void clear()
		{
			_str[0] = '\0';
			_size = 0;
		}

  清空字符串内容只需要修改字符串结束标志,下次再对字符串进行操作会覆盖式写入内容。
在这里插入图片描述


修改函数(Modifiers)

swap函数

  交换两个对象内容

		void swap(string& str)
		{
			std::swap(_size, str._size);
			std::swap(_capacity, str._capacity);
			std::swap(_str, str._str);
		}

insert函数

字符插入

  在指定位置插入一个字符

string& insert(size_t pos, char ch)
{
	assert(pos <= _size);

	// 判断是否需要扩容
	if (_size == _capacity)
	{
		reserve(_capacity == 0 ? 4 : _capacity * 2);
	}

	size_t end = _size + 1;
	while (end > pos)//将插入位置 pos 之后的字符依次向后移动一个位置。
	{
		_str[end] = _str[end - 1];
		--end;
	}

	_str[pos] = ch;//将字符 ch 插入到指定的插入位置 pos
	++_size;//插入字符后,将字符串的实际大小 _size 增加 1

	return *this;
}

字符串插入

  在指定位置插入一个字符串

string& insert(size_t pos, const char* str)
{
	assert(pos <= _size);
	size_t len = strlen(str);
	if (_size + len > _capacity)
	{
		reserve(_size + len);
	}

	// 挪动数据
	size_t end = _size + len;
	while (end >= pos + len)//将插入位置 pos 之后的字符依次向后移动 len 个位置,为新字符串的插入留出空间
	{
		_str[end] = _str[end - len];
		--end;
	}

	strncpy(_str + pos, str, len);//将字符串拷贝到指定位置
	_size += len;//插入字符后,将字符串的实际大小 _size 增加 len

	return *this;
}

append函数

  在字符串后追加一个字符串

void append(const char* str)
{
	size_t len = strlen(str);

// 判读是否需要扩容
	if (_size + len > _capacity)
	{
		reserve(_size+len);
	}

	strcpy(_str + _size, str);
	_size += len;
}

  通过复用insert实现

void append(const char* str)
{
	insert(_size, str);
}

push_back函数

  字符串尾插一个字符

void push_back(char ch)
{
	// 判读是否需要扩容
	if (_size == _capacity)
	{
		reserve(_capacity == 0 ? 4 : _capacity * 2);
	}

	_str[_size] = ch;
	++_size;
	_str[_size] = '\0';//作为字符串必须要字符串结束标志
}

  通过复用insert实现

void push_back(char ch)
{
	insert(_size, ch);
}

erase函数

		void erase(size_t pos, size_t len = npos)
		{
			assert(pos < _size);

			if (len == npos || pos + len >= _size)
			{
				_str[pos] = '\0';
				_size = pos;
			}
			else
			{
				strcpy(_str + pos, _str + pos + len);
				_size -= len;
			}
		}

  如果len 等于缺省值 npos则将pos及以后字符全部删除
  如果删除字符个数超过pos位置后字符总和则同样将pos及以后字符全部删除
  如果以上两种情况不成立则直接将从位置 pos + len 开始的字符复制到位置 pos,覆盖掉要删除的字符。

+=重载

  += 运算符在字符串的操作中通常被用作连接(拼接)操作。
  连接一个字符

		string& operator+=(char ch)
		{
			push_back(ch);
			return *this;
		}

  连接一个字符串

		string& operator+=(const char* str)
		{
			append(str);
			return *this;
		}

元素获取函数(Element access)

operator[]

  返回pos位置的字符,可修改pos位置字符

		char& operator[](size_t pos)
		{
			assert(pos < _size);

			return _str[pos];
		}

  返回pos位置的字符,不可修改pos位置字符

		const char& operator[](size_t pos) const
		{
			assert(pos < _size);

			return _str[pos];
		}

注意断言,下标位置不能等于_size,_size指向最后一个字符的下一个也就是字符0,但是实际库中的string的字符0我们是可以访问到的,这里主要表示有效数据的访问。


操作函数(String operations)

c_str函数

  返回C格式字符串

		const char* c_str() const
		{
			return _str;
		}

substr函数

  获取一个子字符串

		string substr(size_t pos, size_t len = npos) const
		{
			assert(pos < _size);
			string str;
			if (len == npos || pos + len >= _size)
			{
				str.reserve(_size-pos);
				str._size = _size - pos;
				strcpy(str._str, _str + pos);
			}
			else
			{
				str.reserve(len);
				str._size = len;
				strncpy(str._str,_str + pos,len);
				str._str[_size] = '\0';
			}
			return str;
		}

  如果len长度超过pos位置后字符总和或者为缺省值则将pos及以后字符全部复制,反之则复制其区间到目标字符串str,然后将字符串末尾添加字符串结束标志’\0’.
  优化

		string substr(size_t pos, size_t len = npos) const
		{
			assert(pos < _size);
			size_t end = pos+len;
			if (len == npos || pos + len >= _size)
			{
				end = _size;
			}

			string str;
			str.reserve(end - pos);
			for (size_t i = pos; i < end; ++i)
			{
				str += _str[i];
			}

			return str;
		}

  确定被拷贝字符串的末尾位置,然后将被拷贝字符串的字符依次连接到目标字符串中。

find函数

  查找一个字符查找成功返回其下标,查找一个字符串查找成功返回其字符串的起始下标,查找失败均返回npos值

size_t find(const char ch, size_t pos = 0)
{
    assert(pos < _size);
	while (pos < _size)
    {
        if (_str[pos] == ch)
        {
            return pos;
		}
        ++pos;
	}
    return npos;
}
size_t find(const char* str, size_t pos = 0)
{
    const char* ptr = strstr(_str + pos, str);
    if (ptr == nullptr)
    {
        return npos;
    }
    else
    {
        return ptr - _str;
    }
}

  strstr 是一个库函数,用于在一个字符串中查找另一个字符串的首次出现位置

char *strstr(const char *haystack, const char *needle);

  haystack 是要在其中进行搜索的字符串,也被称为主字符串。
  needle 是要在 haystack 中查找的子字符串。
  如果 needle 在 haystack 中找到,则 strstr 返回指向 haystack 中 needle 首次出现位置的指针。如果未找到 needle,则返回 NULL。

运算符重载

流插入运算符<<重载

  流插入运算符<<重载要定义为全局函数,因为定义为全局函数,因此在其实现中不能直接访问类的私有成员,而需要通过类的公有接口进行访问,或者将其定义为类的友元函数进而访问其私有成员。

	std::ostream& operator<<(std::ostream& out, const string& s)
	{
		for (size_t i = 0; i < s.size(); ++i)
		{
			out << s[i];
		}
		return out;
	}

流提取运算符>>重载

	std::istream& operator>>(std::istream& in, string& s)
	{
		s.clear();
		char ch = in.get();
		while (ch != ' ' && ch != '\n')
		{
			s += ch;
			ch = in.get();
		}
		return in;
	}

  使用istream的成员函数get,每次读入一个字符
在这里插入图片描述  以上设计方法存在频繁扩容的问题,如果我们频繁输入就会频繁进行扩容操作,频繁进行函数调用会降低效率,因此我们可以创建一个”输入缓冲区buff“当缓冲区填满则将缓冲区内容刷新出去,当输入结束再将未刷新的缓冲区进行刷新,该策略在语言层面和操作系统层面有着广泛应用。

	std::istream& operator>>(std::istream& in, string& s)
	{
		s.clear();
		char buff[128] = { '\0' };
		size_t i = 0;
		char ch = in.get();
		while (ch != ' ' && ch != '\n')
		{
			if (i == 127)
			{
				s += buff;
				i = 0;
			}
			buff[i++] = ch;
			ch = in.get();
		}
		if (i >= 0)
		{
			buff[i] = '\0';
			s += buff;
		}
		return in;
	}

完整代码

#pragma once
#include<Cassert>
namespace zyc
{
	class string
	{
		//friend std::ostream& operator<<(std::ostream& out, const zyc::string& s);//设置为友元函数直接访问类的私有成员变量
		typedef char* iterator;
		typedef const char* const_iterator;
	public:
		string(const char* str = "")
		{
			_size = strlen(str);
			_capacity = _size;
			_str = new char[_capacity + 1];
			strcpy(_str, str);
		}
		void swap(string& str)
		{
			std::swap(_size, str._size);
			std::swap(_capacity, str._capacity);
			std::swap(_str, str._str);
		}
		string(const string& str)
			:_str(nullptr)
			, _size(0)
			, _capacity(0)
		{
			string temp(str._str);
			swap(temp);
		}
	
		string& operator=(string s)
		{
			swap(s);
			return *this;
		}
		~string()
		{
			delete[] _str;
			_str = nullptr;
			_size = 0;
			_capacity = 0;
		}
		void reserve(size_t n)
		{
			if (n > _capacity)
			{
				char* tmp = new char[n + 1];
				strcpy(tmp, _str);
				delete[] _str;

				_str = tmp;
				_capacity = n;
			}
		}
		void resize(size_t n, char ch = '\0')
		{
			if (n > _size)
			{
				reserve(n);
				for (int i = _size; _size < n; i++)
				{
					_str[i] = ch;
				}
			}
			_str[n] = '\0';
			_size = n;
		}
		string& insert(size_t pos, char ch)
		{
			assert(pos <= _size);

			// 满了就扩容
			if (_size == _capacity)
			{
				reserve(_capacity == 0 ? 4 : _capacity * 2);
			}

			size_t end = _size + 1;
			while (end > pos)
			{
				_str[end] = _str[end - 1];
				--end;
			}

			_str[pos] = ch;
			++_size;

			return *this;
		}
		string& insert(size_t pos, const char* str)
		{
			assert(pos <= _size);
			size_t len = strlen(str);
			if (_size + len > _capacity)
			{
				reserve(_size + len);
			}

			// 挪动数据
			size_t end = _size + len;
			while (end >= pos + len)
			{
				_str[end] = _str[end - len];
				--end;
			}

			strncpy(_str + pos, str, len);
			_size += len;

			return *this;
		}
		void append(const char* str)
		{
			size_t len = strlen(str);

			// 满了就扩容
			if (_size + len > _capacity)
			{
				reserve(_size + len);
			}

			strcpy(_str + _size, str);
			_size += len;
		}
		/*void append(const char* str)
		{
			insert(_size, str);
		}*/
		void push_back(char ch)
		{
			// 满了就扩容
			if (_size == _capacity)
			{
				reserve(_capacity == 0 ? 4 : _capacity * 2);
			}

			_str[_size] = ch;
			++_size;
			_str[_size] = '\0';
		}
		void erase(size_t pos, size_t len = npos)
		{
			assert(pos < _size);

			if (len == npos || pos + len >= _size)
			{
				_str[pos] = '\0';
				_size = pos;
			}
			else
			{
				strcpy(_str + pos, _str + pos + len);
				_size -= len;
			}
		}
		/*string substr(size_t pos, size_t len = npos) const
		{
			assert(pos < _size);
			string str;
			if (len == npos || pos + len >= _size)
			{
				str.reserve(_size-pos);
				str._size = _size - pos;
				strcpy(str._str, _str + pos);
			}
			else
			{
				str.reserve(len);
				str._size = len;
				strncpy(str._str,_str + pos,len);
				str._str[_size] = '\0';
			}
			return str;
		}*/
		string substr(size_t pos, size_t len = npos) const
		{
			assert(pos < _size);
			size_t end = pos+len;
			if (len == npos || pos + len >= _size)
			{
				end = _size;
			}

			string str;
			str.reserve(end - pos);
			for (size_t i = pos; i < end; ++i)
			{
				str += _str[i];
			}

			return str;
		}

		string& operator+=(char ch)
		{
			push_back(ch);
			return *this;
		}

		string& operator+=(const char* str)
		{
			append(str);
			return *this;
		}

		
		const char* c_str() const
		{
			return _str;
		}
		size_t size() const
		{
			return _size;
		}
		size_t capacity() const
		{
			return _capacity;
		}
		size_t find(const char ch, size_t pos = 0)
		{
			assert(pos < _size);
			while (pos < _size)
			{
				if (_str[pos] == ch)
				{
					return pos;
				}
				++pos;
			}
			return npos;
		}
		size_t find(const char* str, size_t pos = 0)
		{
			const char* ptr = strstr(_str + pos, str);
			if (ptr == nullptr)
			{
				return npos;
			}
			else
			{
				return ptr - _str;
			}
		}

		const char& operator[](size_t pos) const
		{
			assert(pos < _size);
			return _str[pos];
		}
		char& operator[](size_t pos)
		{
			assert(pos < _size);
			return _str[pos];
		}
		void clear()
		{
			_str[0] = '\0';
			_size = 0;
		}

	private:
		char* _str;//字符串
		size_t _capacity;//容量
		size_t _size;//有效字符个数
		static const size_t npos = -1; //vs下int类型支持给static和const同时修饰的变量用缺省值
	};
	std::ostream& operator<<(std::ostream& out, const string& s)
	{
		for (size_t i = 0; i < s.size(); ++i)
		{
			out << s[i];
		}
		return out;
	}
/*std::istream& operator>>(std::istream& in, string& s)
	{
		s.clear();
		char ch = in.get();
		while (ch != ' ' && ch != '\n')
		{
			s += ch;
			ch = in.get();
		}
		return in;
	}*/

	std::istream& operator>>(std::istream& in, string& s)
	{
		s.clear();
		char buff[128] = { '\0' };
		size_t i = 0;
		char ch = in.get();
		while (ch != ' ' && ch != '\n')
		{
			if (i == 127)
			{
				s += buff;
				i = 0;
			}
			buff[i++] = ch;
			ch = in.get();
		}
		if (i >= 0)
		{
			buff[i] = '\0';
			s += buff;
		}
		return in;
	}

}

写实拷贝

写时拷贝(Copy-on-Write,简称COW)是一种计算机程序设计领域的优化策略,用于延迟复制资源的实际发生,直到真正需要修改资源时。在写时拷贝的场景中,多个引用(或“视图”)最初指向同一份资源。当某个引用尝试修改资源时,系统才会创建该资源的一个副本,并让修改的引用指向这个新的副本,而其他的引用仍然指向原始的资源。

  写时拷贝就是一种拖延症,是在浅拷贝的基础之上增加了引用计数的方式来实现的,既然是引用计数,必然有一个变量类是某些类所共有的。当第一个类构造时,string的构造函数会根据传入的参数从堆上分配内存,当有其它类需要这块内存时,这个计数为自动累加,当有类析构时,这个计数会减一,直到最后一个类析构时,此时的引用计数变为1或0,这时对对象的空间进行释放。
  关于这个引用计数怎么设计,我在这里介绍两种设计思路:
  1:在类内部设置一个指针指向一片开辟的内存空间。
  2:在string成员变量_str指向的堆内存空间中多开辟一个整形的空间进行计数(这里博主采用第二种设计思路)。
在这里插入图片描述
  当我们知道引用计数的设计思路后,就要考虑什么时候应该进行写时拷贝

  写时拷贝发生在对string对象进行修改操做时,比如insert,push_back,append,erease等成员函数+=,[],=赋值操作,以及析构操作时发生写时拷贝。
  对于写时拷贝为主要实现了以下三个私有成员函数,方便发生写时拷贝时进行调用。

//获得引用计数
		int& GetRefCount()
		{
			return *((int*)(_str - 4));
		}
//写时拷贝
		void Sub(size_t n)
		{
			char* tmp = new char[n + 5];
			tmp += 4;
			strcpy(tmp, _str);
			Release();

			_str = tmp;
			GetRefCount() = 1;
			_capacity = n;
		}

  申请新空间,释放旧空间,在交换前前对引用计数–,交换后将新空间的引用计数置为1.

//检查是否需要对空间进行释放
		void Release()
		{
			if (--GetRefCount() == 0)
			{
				delete[](_str - 4);
			}
		}

写时拷贝完整代码

#pragma once
#include<Cassert>
#include<iostream>
namespace zyc
{
	class string
	{
		typedef char* iterator;
		typedef const char* const_iterator;
	public:
		string(const char* str = "")
		{
			_size = strlen(str);
			_capacity = _size;
			_str = new char[_capacity + 5];
			_str += 4;
			GetRefCount()=1;
			strcpy(_str, str);
		}

		void swap(string& str)
		{
			Sub(_capacity);
			str.Sub(str._capacity);
			std::swap(_size, str._size);
			std::swap(_capacity, str._capacity);
			std::swap(_str, str._str);
		}

		string(const string& str)
			:_str(str._str)
			,_size(str._size)
			,_capacity(str._capacity)
		{	
			++GetRefCount();
		}
		
		string& operator=(const string& s)
		{
			_str = s._str;
			_size = s._size;
			_capacity = s._capacity;
			++GetRefCount();
			return *this;
		}
		~string()
		{
			Release();
		}
		void reserve(size_t n)
		{
			if (n > _capacity)
			{
				Sub(n);
			}
		}
		void resize(size_t n, char ch = '\0')
		{
			if (n > _size)
			{
				reserve(n);
				for (int i = _size; _size < n; i++)
				{
					_str[i] = ch;
				}
			}
			_str[n] = '\0';
			_size = n;
		}
		string& insert(size_t pos, char ch)
		{
			assert(pos <= _size);

			Sub(_capacity);
			// 满了就扩容
			if (_size == _capacity)
			{
				reserve(_capacity == 0 ? 4 : _capacity * 2);
			}

			size_t end = _size + 1;
			while (end > pos)
			{
				_str[end] = _str[end - 1];
				--end;
			}

			_str[pos] = ch;
			++_size;

			return *this;
		}
		string& insert(size_t pos, const char* str)
		{
			assert(pos <= _size);
			Sub(_capacity);
			size_t len = strlen(str);
			if (_size + len > _capacity)
			{
				reserve(_size + len);
			}

			// 挪动数据
			size_t end = _size + len;
			while (end >= pos + len)
			{
				_str[end] = _str[end - len];
				--end;
			}

			strncpy(_str + pos, str, len);
			_size += len;

			return *this;
		}
		void append(const char* str)
		{
			insert(_size, str);
		}
		void push_back(char ch)
		{
			insert(_size, ch);
		}
		void erase(size_t pos, size_t len = npos)
		{
			assert(pos < _size);
			Sub(_capacity);
			if (len == npos || pos + len >= _size)
			{
				_str[pos] = '\0';
				_size = pos;
			}
			else
			{
				strcpy(_str + pos, _str + pos + len);
				_size -= len;
			}
		}
	
		string& operator+=(char ch)
		{
			push_back(ch);
			return *this;
		}

		string& operator+=(const char* str)
		{
			append(str);
			return *this;
		}

		string substr(size_t pos, size_t len = npos) const
		{
			assert(pos < _size);
			size_t end = pos + len;
			if (len == npos || pos + len >= _size)
			{
				end = _size;
			}

			string str;
			str.reserve(end - pos);
			for (size_t i = pos; i < end; ++i)
			{
				str += _str[i];
			}

			return str;
		}

		const char* c_str() const
		{
			return _str;
		}
		size_t size() const
		{
			return _size;
		}
		size_t capacity() const
		{
			return _capacity;
		}
		size_t find(const char ch, size_t pos = 0)
		{
			assert(pos < _size);
			while (pos < _size)
			{
				if (_str[pos] == ch)
				{
					return pos;
				}
				++pos;
			}
			return npos;
		}
		size_t find(const char* str, size_t pos = 0)
		{
			const char* ptr = strstr(_str + pos, str);
			if (ptr == nullptr)
			{
				return npos;
			}
			else
			{
				return ptr - _str;
			}
		}

		const char& operator[](size_t pos) const
		{
			assert(pos < _size);
			return _str[pos];
		}
		char& operator[](size_t pos)
		{
			assert(pos < _size);
			Sub(_size);
			return _str[pos];
		}
		void clear()
		{
			Sub(_capacity);
			_str[0] = '\0';
			_size = 0;
		}
		int count()
		{
			return GetRefCount();
		}
	private:
		void Release()
		{
			if (--GetRefCount() == 0)
			{
				delete[](_str - 4);
			}
		}
		int& GetRefCount()
		{
			return *((int*)(_str - 4));
		}
		void Sub(size_t n)
		{
			char* tmp = new char[n + 5];
			tmp += 4;
			size_t len = _size;
			strcpy(tmp, _str);
			Release();

			_str = tmp;
			GetRefCount() = 1;
			_capacity = n;
			_size = len;
		}
		char* _str;//字符串
		size_t _capacity;//容量
		size_t _size;//有效字符个数
		static const size_t npos = -1; //vs下int类型支持给static和const同时修饰的变量用缺省值
	};
	std::ostream& operator<<(std::ostream& out, const string& s)
	{
		for (size_t i = 0; i < s.size(); ++i)
		{
			out << s[i];
		}
		return out;
	}

	std::istream& operator>>(std::istream& in, string& s)
	{
		s.clear();
		char buff[128] = { '\0' };
		size_t i = 0;
		char ch = in.get();
		while (ch != ' ' && ch != '\n')
		{
			if (i == 127)
			{
				s += buff;
				i = 0;
			}
			buff[i++] = ch;
			ch = in.get();
		}
		if (i >= 0)
		{
			buff[i] = '\0';
			s += buff;
		}
		return in;
	}

}

  注意:我们实现的写时拷贝存并不成熟,像以下修改策略,发生修改操作时,这种操作根本就不会被我们所发现。

string str1 = "hello";
	char& ref = str1[0];
	string str2 = str1;
	ref = 'y';

  并且库的string也存在着缺陷,详情我在这里推荐一篇文章,推荐大家阅读
C++的STD::STRING的“读时也拷贝”技术!


本章到此结束,感谢您的阅读!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1603169.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

未来城市可视化,A3D引擎支持,免费搭建全新一代数字孪生!

AMRT3D数字孪生引擎https://www.amrt3d.com/#/ 什么是未来城市&#xff1f;它是新型数字化理念的载体&#xff0c;以数字孪生与物理世界城市的融合为核心&#xff0c;通过数字孪生技术在数字空间实时构建城市&#xff0c;采用数据整合和分析预测来实时模拟、预测、控制整体城市…

uniapp之消除图片的空白占用空间

我们在使用uniapp开发的过程中一定会遇到一个情况就是我们加载的图片总有一点空白出现在不该出现的地方代码如下 <view style"background:#ff0000;"><image style"width:100%;"src"https://t7.baidu.com/it/u1819248061,230866778&fm19…

[论文笔记]Root Mean Square Layer Normalization

引言 今天带来论文Root Mean Square Layer Normalization的笔记&#xff0c;论文题目是均方根层归一化。 本篇工作提出了RMSNorm&#xff0c;认为可以省略重新居中步骤。 简介 层归一化对Transformer等模型非常重要&#xff0c;它可以帮助稳定训练并提升模型收敛性&#xf…

uniapp-小程序保存图片到相册

小程序保存图片到相册 一. 将图片保存到手机相册涉及的api 有以下几个 1. uni.getSetting (获取用户的当前设置) 2. uni.authorize&#xff08;提前向用户发起授权请求。调用后会立刻弹窗询问用户是否同意授权小程序使用某项功能或获取用户的某些数据&#xff0c;但不会实际调…

GPT国内能用吗

2022年11月&#xff0c;Open AI发布ChatGPT&#xff0c;ChatGPT展现了大型语模型在自然语言处理方面的惊人进步&#xff0c;其生成文本的流畅度和连贯性令人印象深刻&#xff0c;为AI应用打开了新的可能性。 ChatGPT的出现推动了AI技术在各个领域的应用&#xff0c;例如&#x…

『Django』创建app(应用程序)

theme: smartblue 本文简介 点赞 关注 收藏 学会了 在《『Django』环境搭建》中介绍了如何搭建 Django 环境&#xff0c;并且创建了一个 Django 项目。 在刚接触 Django 时有2个非常基础的功能是需要了解的&#xff0c;一个是“app”(应用程序)&#xff0c;另一个是 url(路由…

kafka---topic详解

一、分区与高可用 在Kafka中,事件(events 事件即消息)是以topic的形式进行组织的;同时topic是分区(partitioned)的,这意味着一个topic分布在Kafka broker上的多个“存储桶”(buckets)上。这种数据的分布式放置对于可伸缩性非常重要,因为它允许客户端应用程序同时从多个…

「 网络安全常用术语解读 」漏洞利用交换VEX详解

漏洞利用交换&#xff08;Vulnerability Exploitability eXchange&#xff0c;简称VEX&#xff09;是一个信息安全领域的标准&#xff0c;旨在提供关于软件漏洞及其潜在利用的实时信息。根据美国政府发布的用例(PDF)&#xff0c;由美国政府开发的漏洞利用交换(VEX)使供应商和用…

postman 调试 传base64字符串 原来选xml

上个图 工具类 package org.springblade.common.utils;import com.alibaba.fastjson.JSONObject; import org.springblade.modules.tc.mas.Submit;import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStrea…

tcp三次握手和四次断开以及tcpdump的基本使用

前言 最近工作中会发现有超时的问题&#xff0c;还有就是在面试的时候很多都要求深入理解TCP/IP协议。突然感觉TCP/IP协议是一个既熟悉&#xff0c;又陌生的技术。又想到上大学的时候&#xff0c;老师说过 网络的圣经&#xff1a;“TCP/IP详解” 卷一 卷二 卷三&#xff0c;三…

Spring之CGLIB和JDK动态代理底层实现

目录 CGLIB 使用示例-支持创建代理对象&#xff0c;执行代理逻辑 使用示例-多个方法&#xff0c;走不同的代理逻辑 JDK动态代理 使用示例-支持创建代理对象&#xff0c;执行代理逻辑 Spring会自动在JDK动态代理和CGLIB之间转换: 1、如果目标对象实现了接口&#xff0c;默…

基于51单片机智能鱼缸仿真LCD1602显示( proteus仿真+程序+设计报告+讲解视频)

基于51单片机智能鱼缸仿真LCD显示 1. 主要功能&#xff1a;2. 讲解视频&#xff1a;3. 仿真4. 程序代码5. 设计报告6. 设计资料内容清单&&下载链接资料下载链接&#xff1a; 基于51单片机智能鱼缸仿真LCD显示( proteus仿真程序设计报告讲解视频&#xff09; 仿真图prot…

【Web】NewStarCTF 2022 题解(全)

目录 Week1 HTTP Head?Header! 我真的会谢 NotPHP Word-For-You Week2 Word-For-You(2 Gen) IncludeOne UnserializeOne ezAPI Week3 BabySSTI_One multiSQL IncludeTwo Maybe You Have To think More Week4 So Baby RCE BabySSTI_Two UnserializeT…

IDEA 安装、基本使用、创建项目

文章目录 下载基本使用修改颜色主题Keymap插件 创建项目创建模块新建 Java 类运行新建 Package打包 Jar运行 jar 包 查看文档 下载 官方下载地址&#xff1a;https://www.jetbrains.com/zh-cn/idea/download/?sectionmac 这里我下载 macOS 社区版&#xff0c;IDEA 2024.1 (C…

mPEG-Glutaramide Acid结合了聚乙二醇(PEG)和戊二酸(GAA)的性质

【试剂详情】 英文名称 mPEG-GAA&#xff0c;Methoxy PEG GAA&#xff0c; mPEG-Glutaramide Acid 中文名称 聚乙二醇单甲醚酰胺戊二酸&#xff0c; 甲氧基-聚乙二醇-戊二酰胺酸 外观性状 由分子量决定 分子量 400,600&#xff0c;2k&#xff0c;3.4k&#xff0c;5k&…

代码随想录算法训练营第五十七天 | 647. 回文子串、516. 最长回文子序列

代码随想录算法训练营第五十七天 | 647. 回文子串、516. 最长回文子序列 647. 回文子串题目解法 516. 最长回文子序列题目解法 动态规划总结链接感悟 647. 回文子串 题目 解法 题解链接 动态规划 class Solution { public:int countSubstrings(string s) {// dp[i][j]:表示…

[Java EE] 多线程(二): 线程的创建与常用方法(下)

2.3 启动一个线程–>start() 之前我们已经看到了如何通过重写run()方法来创建一个线程对象,但是线程对象被创建出来并不意味着线程就开始运行了. 覆写run方法是给线程提供了所要做的事情的指令清单创建线程对象就是把干活的人叫了过来.而调用start方法,就是喊一声"行…

Java处理CSV类库:OpenCSV

一&#xff1a;CSV简介 Comma-Separated Values(CSV), 因分隔符没有严格指定规范标准&#xff0c;可以使用逗号&#xff0c;也可以使用其他字符&#xff08;如制表符\t、分号;等&#xff09;&#xff0c;所以CSV也称为 逗号分隔值或者字符分隔值。csv文件是使用纯文本来存储表…

【数据库】为什么要添加一个与业务无关的主键?

关注获取更多&#xff1a; 你是否想过&#xff0c;为什么mysql要设置一个自增的主键&#xff0c;或者使用uuid生成一个和业务无关的主键id&#xff0c;在数据库设计中&#xff0c;主键是用来唯一标识每一行数据的关键。通常情况下&#xff0c;我们会选择与业务相关的字段作为…

CMEF | 澳鹏Appen精彩亮相第89届中国国际医疗器械博览会

4月14日&#xff0c;为期四天的第89届中国国际医疗器械博览会&#xff08;CMEF&#xff09;盛大收官。如今&#xff0c;人们的健康需求在人口老龄化等一系列因素的影响下持续增长&#xff0c;这意味着卫生系统也面对着更多具有复杂健康需求的患者。信息化、数字化、智能化已经成…