C++初级----list(STL)

news2024/10/5 20:17:53

1、 list介绍

1.1、 list介绍

1.list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。 
    1. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向 其前一个元素和后一个元素。 
    2. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高 效。
    3. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率 更好。
    4. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list 的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间 开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这 可能是一个重要的因素)

1.2 、list的使用

list中的接口比较多,此处类似,只需要掌握如何正确的使用,然后再去深入研究背后的原理,已达到可扩展 的能力。以下为list中一些常见的重要接口。

1.3、list的构造

构造函数( (constructor))接口说明
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list

1.4 list iterator的使用

函数声明接口说明
begin + end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin + rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的 reverse_iterator,即begin位置

【注意】

1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动

2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

1.5 list element access

1.6 list modifiers

函数声明接口说明
push_front 在list首元素前插入值为val的元素
pop_front 删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back 删除list中最后一个元素
insert 在list position 位置中插入值为val的元素
erase 删除list position位置的元素
swap 交换两个list中的元素
clear清空list中的有效元素

1.7 list的迭代器失效

        迭代器失效即迭代器所指向的节点的无效,即该节 点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代 器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

2、list的模拟实现

2.1 list的反向迭代器

        通过前面例子知道,反向迭代器的++就是正向迭代器的--,反向迭代器的--就是正向迭代器的++,因此反向迭 代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行 包装即可。

template<class Iterator>
class ReverseListIterator
{
public:
    typedef typename Iterator::Ref Ref;
    typedef typename Iterator::Ptr Ptr;
    typedef ReverseListIterator<Iterator> Self;

public:
    // 构造
    ReverseListIterator(Iterator it): _it(it) {}

    // 具有指针类似行为
    Ref operator*()
    {
        Iterator temp(_it);
        --temp;
        return *temp;
    }

    Ptr operator->()
    {
        return &(operator*());
    }

    // 迭代器支持移动
    Self& operator++()
    {
        --_it;
        return *this;
    }

    Self operator++(int)
    {
        Self temp(*this);
        --_it;
        return temp;
    }

    Self& operator--()
    {
        ++_it;
        return *this;
    }

    Self operator--(int)
    {
        Self temp(*this);
        ++_it;
        return temp;
    }

    // 迭代器支持比较
    bool operator!=(const Self& l) const
    {
        return _it != l._it;
    }

    bool operator==(const Self& l) const
    {
        return _it != l._it;
    }

    Iterator _it;
};

2.2、list的模拟实现

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;
namespace kzy {
	template<class T>
	struct list_node {
		list_node<T>* _prev;
		list_node<T>* _next;
		T _data;

		list_node(const T& val = T())
			:_prev(nullptr)
			,_next(nullptr)
			,_data(val)
		{}
	};

	template<class T, class Ref,class Ptr>
	struct _list_iterator
	{
		typedef list_node<T> Node;
		typedef _list_iterator<T, Ref, Ptr> self;
		
		Node* _node;

		_list_iterator(Node* node)
			:_node(node)
		{}

		Ref operator*() 
		{
			return _node->_data;
		}
		Ptr operator->()
		{
			//return &(operator*());
			return &_node->_data;
		}
		self& operator++() 
		{
			_node=_node->_next;
			return *this;
		}
		self operator++(int)
		{
			self* tmp(*this);
			_node = _node->next;
			return tmp;
		}
		self& operator--() 
		{
			_node = _node->_prev;
			return *this;
		}
		self operator--(int)
		{
			self* tmp(*this);
			_node = _node->_prev;
			return tmp;
		}
		bool operator!=(const self& it)
		{
			return _node != it._node;
		}
		bool operator==(const self& it)
		{
			return _node == it._node;
		}
	};

	template<class T>
	class list {
		typedef list_node<T> Node;
	public:
		typedef _list_iterator<T, T&, T*> iterator;
		typedef _list_iterator<T, const T&, const T*> const_iterator;
		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}
		const_iterator end() const
		{
			return const_iterator(_head);
		}
		iterator begin()
		{
			return iterator(_head->_next);
		}
		iterator end() 
		{
			return iterator(_head);
		}

	

		list() 
		{
			_head = new Node();
			_head->_next = _head;
			_head->_prev = _head;
		}
		void empty_init() 
		{
			_head = new Node();
			_head->_next = _head;
			_head->_prev = _head;
		}
		template <class InputIterator>
		list(InputIterator first, InputIterator last)
		{
			empty_init();

			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}
		void swap(list<T>& lt)
		{
			std::swap(_head, lt._head);
		}

		list(const list<T>& it)
		{
			empty_init();
			list<T> tmp = list(it.begin(), it.end());
			swap(tmp);

		}
		list<T>& operator=(list<T> lt)
		{
			swap(lt);
			return *this;
		}
		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}
		void clear()
		{
			iterator it = begin();
			while (it != end()) {
				it=erase(it);
			}
		}
		iterator erase(iterator pos) 
		{
			assert(pos != end());
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;
			prev->_next = next;
			next->_prev = prev;
			delete cur;
			return iterator(next);
		}
		void push_back(const T& x) 
		{
			insert(end(),x);
		}
		void push_front(const T& x)
		{
			insert(begin(), x);
		}
		void pop_back() 
		{
			erase(--end());
		}
		void pop_front() 
		{
			erase(begin());
		}
		iterator insert(iterator pos, const T& x)
		{
			Node* newnode = new Node(x);
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;

			return iterator(newnode);
		}
	private:
		Node* _head;
	};

	void print_list(const list<int>& lt)
	{
		list<int>::const_iterator it = lt.begin();
		while (it != lt.end())
		{
			//*it = 10; // 不允许修改
			cout << *it << " ";
			++it;
		}
		cout << endl;
	}
	void test_list1()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);

		list<int>::iterator it = lt.begin();
		while (it != lt.end())
		{
			*it = 20;
			cout << *it << " ";
			++it;
		}
		cout << endl;

		print_list(lt);
	}

	struct AA
	{
		AA(int a1 = 0, int a2 = 0)
			:_a1(a1)
			, _a2(a2)
		{}

		int _a1;
		int _a2;
	};

	void test_list2()
	{
		list<AA> lt;
		lt.push_back(AA(1, 1));
		lt.push_back(AA(2, 2));
		lt.push_back(AA(3, 3));
		lt.push_back(AA(4, 4));

		// 迭代器模拟的是指针行为
		// int* it  *it
		// AA*  it  *it  it->
		list<AA>::iterator it = lt.begin();
		while (it != lt.end())
		{
			//cout << (*it)._a1 << "-"<< (*it)._a2 <<" ";
			cout << it->_a1 << "-" << it->_a2 << " ";
			++it;
		}
		cout << endl;
	}


	void test_list3()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);

		lt.push_front(1);
		lt.push_front(2);
		lt.push_front(3);
		lt.push_front(4);
		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		lt.pop_front();
		lt.pop_front();

		lt.pop_back();
		lt.pop_back();

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	void test_list4()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);
		lt.push_back(6);

		// 要求在偶数的前面插入这个偶数*10
		auto it1 = lt.begin();
		while (it1 != lt.end())
		{
			if (*it1 % 2 == 0)
			{
				lt.insert(it1, *it1 * 10);
			}

			++it1;
		}

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	void test_list5()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);
		lt.push_back(6);

		// 删除所有的偶数
		/*auto it1 = lt.begin();
		while (it1 != lt.end())
		{
			if (*it1 % 2 == 0)
			{
				lt.erase(it1);
			}

			++it1;
		}*/

		auto it1 = lt.begin();
		while (it1 != lt.end())
		{
			if (*it1 % 2 == 0)
			{
				it1 = lt.erase(it1);
			}
			else
			{
				++it1;
			}
		}

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		lt.clear();

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		lt.push_back(10);
		lt.push_back(20);
		lt.push_back(30);

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;
	}

	void test_list6()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);
		lt.push_back(6);

		list<int> lt1(lt);

		for (auto e : lt1)
		{
			cout << e << " ";
		}
		cout << endl;

		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		list<int> lt2;
		lt2.push_back(10);
		lt2.push_back(20);
		lt1 = lt2;
		for (auto e : lt2)
		{
			cout << e << " ";
		}
		cout << endl;

		for (auto e : lt1)
		{
			cout << e << " ";
		}
		cout << endl;
	}
}

3、list和vector对比

vector

list

底层结构

动态顺序表,一段连续空间

带头结点的双向循环链表

随机访问

支持随机访问,访问某个元素效率O(1)

不支持随机访问,访问某个元素效率O(N)

插入和删除

任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低

任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1)

空间利用率

底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高

底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低

迭代器

原生态指针

对原生态指针(节点指针)进行封装

迭代器失效

在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效

插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响

使用场景

需要高效存储,支持随机访问,不关心插入删除效率

大量插入和删除操作,不关心随机访

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1602639.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

git 分支-变基

在git中&#xff0c;将一个分支的更改集成到另一个分支有两种主要方式&#xff1a;合并&#xff08;merge&#xff09;和变基&#xff08;rebase&#xff09;。在本节中&#xff0c;将学习什么是变基&#xff0c;如何执行变基操作&#xff0c;为什么它是一个非常强大的工具&…

Web 题记

[极客大挑战 2019]LoveSQL 看到这种就肯定先想到万能密码&#xff0c;试试&#xff0c;得到了用户名和密码 总结了一些万能密码&#xff1a; or 11 oror admin admin-- admin or 44-- admin or 11-- admin888 "or "a""a admin or 22# a having 11# a havin…

vue2知识点1 ———— (vue指令,vue的响应式基础)

vue2的知识点&#xff0c;更多前端知识在主页&#xff0c;还有其他知识会持续更新 Vue 指令 Vue指令是Vue.js中的一个重要概念&#xff0c;用于向DOM元素添加特定行为或功能。Vue指令以v-开头&#xff0c;例如v-bind、v-if、v-for等。 v-bind 动态绑定属性 用法&#xff1a…

Linux sort/uniq/wc

文章目录 1. sort 排序将线程ID从大到小排序 2.uniq 临近去重3.wc word cnt 统计 1. sort 排序 将线程ID从大到小排序 grep -v是反向筛选&#xff0c;利用USER&#xff0c;排除掉首行 awk是打印第1 2列 sort -n是代码以数值大小做排序&#xff0c;不加的话会以字符排序。 -k是…

数通HCIE考试分享:考前心态很重要,心情放松好过一次练习

誉天数通HCIE晚班火热预约中&#xff01;真机实验考前辅导备考资料&#xff0c;名师保驾护航&#xff0c;助你稳定通关&#xff01;识别二维码&#xff0c;即可获取免费试听名额&#xff01; 备考阶段 我是去年10月底完成了笔试考试&#xff0c;在笔试之前就将PY的课程过了一遍…

白话transformer(六)编码器与解码器

B 站视频&#xff1a;https://www.bilibili.com/video/BV1fE421T7tR/?vd_source9e18a9285284a1fa191d507ae548fa01 白话transformer&#xff08;六&#xff09; 1、前言 今天我们将探讨Transformer模型中的两个核心组件&#xff1a;编码器和解码器。我们将通过一个具体的任务…

【数据分析】AHP层次分析法

博主总结&#xff1a;根据每个方案x各准则因素权重累加结果 对比来选择目标。数据主观性强 简介 AHP层次分析法是一种解决多目标复杂问题的定性和定量相结合进行计算决策权重的研究方法。该方法将定量分析与定性分析结合起来&#xff0c;用决策者的经验判断各衡量目标之间能…

微软开源 WizardLM-2,70B优于GPT4-0613,7B持平阿里最新的Qwen1.5-32B

当地时间4月15号&#xff0c;微软发布了新一代大语言模型 WizardLM-2&#xff0c;新家族包括三个尖端型号:WizardLM-2 8x22B, WizardLM-2 70B&#xff0c;和WizardLM-2 7B&#xff0c;作为下一代最先进的大型语言模型&#xff0c;它在复杂聊天、多语言、推理和代理方面的性能有…

为什么还有人再问鸿蒙开发有必要学吗?

前言 学习鸿蒙开发&#xff0c;这事儿真的挺有必要的。鸿蒙操作系统&#xff0c;它厉害就厉害在高性能、可扩展&#xff0c;还特智能。现在智能设备和物联网火得不行&#xff0c;鸿蒙就是要成为这个时代的领头羊。它可不是来跟安卓抢饭碗的&#xff0c;它的眼光可远了&#xf…

4/17 FreeRTOS_day2

1.总结串口的发送和接收功能使用到的函数 端口发送数据 HAL_StatusTypeDef HAL_UART_Transmit( UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout ) UART_HandleTypeDef *huart&#xff1a;指定要使用的串口 const uint8_t *pData&#…

【STM32】嵌入式实验二 GPIO 实验 (前三个设计)

1&#xff0e; 按键亮灯 设计 GPIO 实验项目 1&#xff0c;功能&#xff1a;当按键 KB1 按下时&#xff0c;实验板上全彩发光二极管周边 的发光二极管全亮&#xff0c;当按键 KB2 按下时跑马灯 D0 闪亮。 实验要求基于寄存器的GPIO配置&#xff0c;所以需要手动操作寄存器来配…

Spring5深入浅出篇:Spring动态代理详解

Spring5深入浅出篇:Spring动态代理详解 很多粉丝私信我这个Spring5的课程在哪看,这边是在B站免费观看欢迎大家投币支持一下. 视频地址 Spring动态代理详解 这篇主要介绍MethodBeforeAdvice,MethodInterceptor俩者在动态代理中起到的作用,并且详解俩者区别 额外功能的详解 Met…

重定向原理和缓冲区

文章目录 重定向缓冲区 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的 人工智能学习网站&#xff0c; 通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。 点击跳转到网站。 重定向 内核中为了管理被打开的文件&#xff0c;一定会存在描述一…

【热门话题】常见分类算法解析

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 常见分类算法解析1. 逻辑回归&#xff08;Logistic Regression&#xff09;2. 朴…

【Spring进阶系列丨第十篇】基于注解的面向切面编程(AOP)详解

文章目录 一、基于注解的AOP1、配置Spring环境2、在beans.xml文件中定义AOP约束3、定义记录日志的类【切面】4、定义Bean5、在主配置文件中配置扫描的包6、在主配置文件中去开启AOP的注解支持7、测试8、优化改进9、总结 一、基于注解的AOP 1、配置Spring环境 <dependencie…

1.SCI各模块

1.学会“抄” 写论文&#xff0c;一定要学会“抄”&#xff01;这样才能事半功倍&#xff0c;尤其是对于初次写作的新手&#xff0c;否则写作过程一定会让你痛不欲生&#xff0c;而且写出来的东西就是一坨shi&#xff0c;不仅折磨自己&#xff0c;也折磨导师。 写论文与建大楼…

SparkUI 讲解

目录 Executors Environment Storage SQL Exchange Sort Aggregate Jobs Stages Stage DAG Event Timeline Task Metrics Summary Metrics Tasks &#x1f490;&#x1f490;扫码关注公众号&#xff0c;回复 spark 关键字下载geekbang 原价 90 元 零基础入门 Spar…

OpenCV从入门到精通实战(二)——文档OCR识别(tesseract)

导入环境 导入必要的库 numpy: 用于处理数值计算。 argparse: 用于处理命令行参数。 cv2: OpenCV库&#xff0c;用于图像处理。 import numpy as np import argparse import cv2设置命令行参数 ap argparse.ArgumentParser() ap.add_argument("-i", "--imag…

Appium的使用:混合APP切换上下文

网上别的文章说要把移动端的webview设置成调试模式,才能看到下图信息。 但我这里是直接在Android Studio新建了一个空白活动,然后放的webview控件,写的webview代码,直接部署到模拟器上,在确定adb可以连接到模拟器后,在桌面浏览器输入chrome://inspect/#devices后就可以看…

3 xgboost

xgboost比赛以及工程利器。目前存在大量有关算法文档。 XGBoost&#xff08;eXtreme Gradient Boosting&#xff09;是一种基于决策树集成的机器学习算法&#xff0c;被广泛应用于分类、回归和排名等任务。XGBoost 在 Kaggle 等数据科学竞赛中取得了很好的表现&#xff0c;被认…