深度学习 Lecture 7 迁移学习、精确率、召回率和F1评分

news2024/11/25 4:33:42

一、迁移学习(Transfer learning)

用来自不同任务的数据来帮助我解决当前任务。

场景:比如现在我想要识别从0到9度手写数字,但是我没有那么多手写数字的带标签数据。我可以找到一个很大的数据集,比如有一百万张图片的猫、狗、汽车和人等1000个类,那我就可以在这个大型数据集上用这一百万张图片作为输入,训练一个模型来学会识别这1000个不同的类别。
比如我训练出来后,长这样:

这里有w,b参数

那接下来,我就可以把前面的输入层和隐藏层全部照原来的不动,把输出层更改为10个神经元,即:

10个神经元分别对应0-9的10个数字。

但注意这里的w5和b5需要改变,因为神经元改变了,所以要用前四层的参数进行训练,得出新的w5和b5。

也就是说,迁移学习后,有两种选择:

 

选项1适合数据集较小的情况。

选项卡2适合数据集较大的情况。

这种算法就叫迁移学习,就是把通过另一个训练好的训练模型参数迁移到现有的模型中来,这样对新神经网络的参数很有帮助,因为只需要再让算法学习一下,就能达到很好的效果了。

在大型数据集上训练,然后在较小的数据集上进一步调参(也叫微调(fine tuning),这两个步骤叫监督预训练(supervised pretraining)

而迁移学习的一个好处是,我可能不需要进行监督预训练。

对应很多神经网络来说,已经有研究人员在大数据集上训练了一个效果很好的神经网络并发在了网上,那比起从头开始,我们可以下载别人训练好的神经网络,把自己的输出层替换原有的输出层,并用自己的数据集做一点微调即可得到一个表现良好的神经网络。

但是要注意!对应预训练和调参这两步,使用的图像必须是同个输入尺寸的,并且选择的别人的模型也要是图像识别的。也就是说,如果你要做音频识别,那你要找的神经网络也是在音频数据上预训练过的神经网络。

二、机器学习项目的整个周期

第一步:确定项目的范围:

确定这项目是什么,什么是你想做的

第二步:收集数据

确定需要哪些数据来训练你的机器学习系统,然后去收集

第三步:训练模型

进行误差分析,进行迭代发展,看训练效果是否不好, 不好的话找原因,比如回去收集更多的数据这样。

第四步:部署系统

应用到现实中,并且要跟进模型的性能,如果模型性能出现问题,要及时维护。

PS: 注意,误差最小的模型不一定代表模型准确率最高。

原因:比如当你的模型在预测一个人是否有罕见病的时候(罕见病发病率0.5%),而你的蠢模型只会一直在输出该人无罕见病,那模型准确率就是99.5%;但是如果你自己训练的模型准确率是99.2%,但是它不会像傻子一样一直在输出该人无罕见病,可能更有用这个时候你怎么判断哪个模型更好呢?(这种情况叫数据集倾斜问题)

解决方式是使用精确率(Precison)召回率(Recall)作为错误的度量。

三、精确率和召唤率

要理解这两个概念,首先要知道什么是true positive, false positive, false negative和true negative。

举个例子:

这是个混淆矩阵,现在我们在预测一个罕见病,横轴代表实际的类,竖轴代表预测出来的类。

如果预测的结果和实际结果一样,这个就叫true;不一样就叫false;

那positive和negative就是1和0的区别,表示是否有疾病。

所以,精确率:

true positive的值除以被归为positive的样本的值(也就是在所有你预测的阳性样本中,真正是真样本的比率)

 召回率:

true positive的值除actual positived的值(也就是true positive的值加上false negative的值)

这两个值能够帮我们判断是不是模型一直在输出0(也就是我们上面提及的情况)

因为如果一直都在输出0,那精确率和召回率就都是0.

所以如果训练的模型是罕见病的时候,一定需要注意这两个数字够不够高,如果都比较高,就能说明我们的学习算法是有效的。

总结:

高精度:已知算法诊断来访者有这种疾病,后面发现大多数来访者确实都有这种疾病,那就说是高精度。(预测为正的样本中有多少是真的预测正确了(找得对))

高召回:已知来访者有这种疾病,后面发现算法能在很大程度上诊断出他们患有这种疾病,这就是找的全。

那如何权衡精度和召回率呢?

四、精度和召回率的权衡

通常我们会将逻辑回归的输出阈值设置为0.5,但假如我们只有在觉得非常确信的情况下才预测y = 1的话,我们可以选择把阈值设置更高,比如0.7,也就是说,此时要预测y = 1至少要有70%的把握了,这样就能提高预测的精度了。注意,阈值的设置要同步,也就是说,此时预测y=1和y=0的阈值都是0.7。

但是这样的话,精度提高了,就会导致更低的召回率,因为预测的次数变少了。所以在所有的患者中,我们能正确诊断出患病的人会更少。

同理,那降低阈值就是提高预测的召回率,也就是说,允许找出更多的病例。

那权衡这两个值的话,就要把不同阈值对于的精确率和召回率的图画出来:

 而且注意,不能用交叉验证法选出阈值,因为是由你来选择最佳的点。

所以对于大多数算法程序而言,最终要做的是手动选择一个阈值来权衡精度和召回率。

但是如果你想要自动权衡精度和召回率,而不是自己来手动选择阈值的话,还可以使用

F1评分(F1 Score):它可以自动结合精度和召回率,帮你选择最佳权衡值。

这个计算结果也叫调和平均数(harmonious means) 

也就是说,可以通过这个公式,来对召回率和精度进行计算,得出F1评分,选出最佳的权衡组合。得分越高,哪种算法就越好。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1600545.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SD-WAN企业组网:多样化的应用场景

随着企业网络环境的快速发展,SD-WAN技术正成为实现站点间网络互通的关键所在。它不仅支持企业站点对因特网、SaaS云应用和公有云等多种业务的高效访问,更能满足多样化的业务需求。深入探讨SD-WAN的组网应用场景,我们能够发现其广泛的适用性和…

Day 14 网络协议

常见网络设备:交换机 路由器 中继器 多协议网关(路由器的前身) 交换机:用于连接统一网络的设备,实现内网设备通信。 从广义上分为:局域网交换机,广域网交换机 从网络构成分为:接…

UbuntuServer22.04安装docker

通过ubuntuserver安装docker是搭建开发环境最便捷的方式之一。下面介绍一下再ubuntu22.04上如何安装docker。相关内容参考官网链接:Install Docker Engine on Ubuntu 根据官网推荐,利用apt命令的方式安装,首先需要设置docker仓库&#xff0c…

【个人博客搭建】(5)Sqlsugar实体创建数据库数据

1、在appsettings.json文件中配置SqlServer数据库连接字符串信息。(后续考虑添加MySQL数据库等类型) "DBS": [/*对应下边的 DBTypeMySql 0,SqlServer 1,*/{"ConnId": "plateau.poetize.2024","DBType": 1,&qu…

分类损失函数与评估指标

目录 1 评估指标 1.1 准确率 1.2 精确率 1.3 召回率 1.4 F1 score 1.5 ROC曲线 1.6 AUC 1.7 PRC曲线的优势 2 损失函数 1. 负对数似然损失 2. 交叉熵损失 3. 指数损失 3 分类问题为什么用交叉熵损失不用 MSE 损失 1 评估指标 混淆矩阵 TP(True Positive) ---- 正…

锂电池充放电管理-单片机通用

锂电池充放电管理-单片机通用 一、锂电池充放电检测的原理二、power.c的实现三、power.h的实现四、锂电池检测和充电电路 一、锂电池充放电检测的原理 ①两节锂电池通过电阻分压检测ADC,再根据电压划分电量等级;②充电使用的是锂电池充电IC方案&#xf…

区块链与数字身份:Web3的身份验证革命

随着数字化时代的发展,个人身份认证在日常生活和商业活动中变得越来越重要。然而,传统的身份认证方式存在着许多问题,如安全性不足、数据泄露、信息篡改等。而区块链技术的出现为数字身份认证带来了全新的解决方案。本文将深入探讨区块链与数…

无人零售行业展望:智能化与便利性引领未来

无人零售行业展望:智能化与便利性引领未来 无人零售,这一依靠智能化技术如人工智能、物联网、和大数据的零售模式,正逐步成为全球零售行业的新趋势。该模式允许消费者在没有店员的情况下自助完成购物,提供了24小时服务&#xff0…

【Web】陇原战“疫“2021网络安全大赛 题解

目录 CheckIN eaaasyphp EasyJaba CheckIN 拿到附件,贴出关键代码 func getController(c *gin.Context) {cmd : exec.Command("/bin/wget", c.QueryArray("argv")[1:]...)err : cmd.Run()if err ! nil {fmt.Println("error: ", …

Web3.0与AI的交融:开启智能互联网新时代

目前有140 多个 Web3 AI 概念项目,覆盖了基础设施、数据、预测市场、计算与算力、教育、DeFi & 跨链、安全、NFT & 游戏 & 元宇宙、搜索引擎、社交 & 创作者经济、AI 聊天机器人、DID & 消息传递、治理、医疗、交易机器人等诸多方向。持续关注…

SQLite数据库中JSON 函数和运算符

返回:SQLite—系列文章目录 上一篇:维护SQLite的私有分支(二十六) 下一篇:SQLite—系列文章目录 ​ 1. 概述 默认情况下,SQLite 支持 29 个函数和 2 个运算符 处理 JSON 值。还有两个表值函数可用于分解 JSON…

二级综合医院云HIS系统源码,B/S架构,采用JAVA编程,集成相关医保接口

二级医院云HIS系统源码 云HIS系统是一款满足基层医院各类业务需要的健康云产品。该产品能帮助基层医院完成日常各类业务,提供病患预约挂号支持、病患问诊、电子病历、开药发药、会员管理、统计查询、医生工作站和护士工作站等一系列常规功能,还能与公卫…

中立分析腾讯云故障相关的事件

最近腾讯云的故障,让一堆云计算爱好者兴奋地远看指点江山、近看沐猴而冠。我比这群爱好者们更了解云计算,但是我尊重我的读者,你们从我这里看到的科普信息,不仅仅只有情绪价值。 在信息爆炸的时代,大家关注和信任某个媒…

OSPF:MGRE实验

一、拓扑图 二、实验内容 1,R6为ISP只能配置IP地址,R1-R5的环回为私有网段 2,R1/4/5为全连的MGRE结构,R1/2/3为星型的拓扑结构,R1为中心站点 3,所有私有网段可以互相通讯,私有网段使用OSPF完成 …

js-pytorch:开启前端+AI新世界

嗨, 大家好, 我是 徐小夕。最近在 github 上发现一款非常有意思的框架—— js-pytorch。它可以让前端轻松使用 javascript 来运行深度学习框架。作为一名资深前端技术玩家, 今天就和大家分享一下这款框架。 往期精彩 Nocode/Doc,可…

uni-app中页面生命周期与vue生命周期的执行顺序对比

应用生命周期 uni-app 支持如下应用生命周期函数: 函数名说明平台兼容onLaunch当uni-app 初始化完成时触发(全局只触发一次),参数为应用启动参数,同 uni.getLaunchOptionsSync 的返回值onShow当 uni-app 启动&#x…

20240416,对象初始化和清理,对象模型和THIS指针

哈哈哈乌龟越狱了 目录 2.5 深拷贝&浅拷贝 2.6 初始化列表 2.7 类对象作为类成员 2.8 静态成员 2.9 成员变量和成员函数分开存储 2.10 THIS指针的用途 2.11 空指针访问成员函数 2.12 COSNT修饰成员函数 2.5 深拷贝&浅拷贝 浅拷贝:简单的赋值拷贝…

如何调整Hostease服务器cPanel中的域名数量限制

近段时间我们的网站总是受到攻击,为了保障网站的安全,我们准备将所有网站迁移至Hostease提供的高防服务器中。我们的服务器配置是Intel I3 - 2120,8GB 内存 1TB 机械硬盘,100M 带宽出口,外加10G 防御的防御&#xff0…

Day06 - React 第六天

学习react的第六天,持续更新中 关注不迷路!!! 使用脚手架创建一个react项目 全局下载react脚手架 npm install -g create-react-app 在需要的项目文件中创建一个react项目 create-react-app #项目名 创建好项目以后 npm或yar…

Activity——spring方式创建activiti所需数据表结构

文章目录 前言依赖引入编写数据库连接等配置配置日志文件编写java代码生成数据库表结构问题反馈与解决思路问题一:Cause: java.sql.SQLSyntaxErrorException: Table activiti_02.act_ge_property doesnt exist 为什么文件名必须写死? 前言 在之前创建ac…