代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客
第六章 二叉树part01
今日内容:
● 理论基础
● 递归遍历
● 迭代遍历
● 统一迭代
详细布置
理论基础
需要了解 二叉树的种类,存储方式,遍历方式 以及二叉树的定义
文章讲解:https://programmercarl.com/%E4%BA%8C%E5%8F%89%E6%A0%91%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html
递归遍历 (必须掌握)
二叉树的三种递归遍历掌握其规律后,其实很简单
题目链接/文章讲解/视频讲解:https://programmercarl.com/%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E9%80%92%E5%BD%92%E9%81%8D%E5%8E%86.html
迭代遍历 (基础不好的录友,迭代法可以放过)
题目链接/文章讲解/视频讲解:https://programmercarl.com/%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E8%BF%AD%E4%BB%A3%E9%81%8D%E5%8E%86.html
统一迭代 (基础不好的录友,迭代法可以放过)
这是统一迭代法的写法, 如果学有余力,可以掌握一下
题目链接/文章讲解:https://programmercarl.com/%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E7%BB%9F%E4%B8%80%E8%BF%AD%E4%BB%A3%E6%B3%95.html
目录
理论基础
递归遍历-二叉树的前中后序遍历
迭代遍历
统一迭代
理论基础
- 算法公开课
- 题目分类
- 二叉树的种类
- 二叉树的存储方式
- 二叉树的遍历方式
- 二叉树的定义
- 总结
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) {
this.val = val;
}
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
递归遍历-二叉树的前中后序遍历
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
if (root == null) {
return new ArrayList<>();
}
ArrayList<Integer> list = new ArrayList<>();
preOrder(root, list);
return list;
}
private void preOrder(TreeNode root, ArrayList<Integer> list) {
if (root == null) {
return;
}
list.add(root.val);
preOrder(root.left, list);
preOrder(root.right, list);
}
}
package com.question.solve.leetcode.programmerCarl2._07_binaryTrees;
import java.util.ArrayList;
import java.util.List;
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) {
this.val = val;
}
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
//前序遍历·递归·LC144_二叉树的前序遍历
class Solution1 {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<Integer>();
preorder(root, result);
return result;
}
public void preorder(TreeNode root, List<Integer> result) {
if (root == null) {
return;
}
result.add(root.val);
preorder(root.left, result);
preorder(root.right, result);
}
}
//中序遍历·递归·LC94_二叉树的中序遍历
class Solution2 {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
inorder(root, res);
return res;
}
void inorder(TreeNode root, List<Integer> list) {
if (root == null) {
return;
}
inorder(root.left, list);
list.add(root.val); // 注意这一句
inorder(root.right, list);
}
}
//后序遍历·递归·LC145_二叉树的后序遍历
class Solution3 {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<>();
postorder(root, res);
return res;
}
void postorder(TreeNode root, List<Integer> list) {
if (root == null) {
return;
}
postorder(root.left, list);
postorder(root.right, list);
list.add(root.val); // 注意这一句
}
}
迭代遍历
package com.question.solve.leetcode.programmerCarl2._07_binaryTrees;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Stack;
public class _0000_迭代遍历 {
}
//前序遍历顺序:中-左-右,入栈顺序:中-右-左
class Solution001 {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) {
return result;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode node = stack.pop();
result.add(node.val);
if (node.right != null) {
stack.push(node.right);
}
if (node.left != null) {
stack.push(node.left);
}
}
return result;
}
}
//中序遍历顺序: 左-中-右,入栈顺序:左-右
class Solution002 {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) {
return result;
}
Stack<TreeNode> stack = new Stack<>();
TreeNode cur = root;
while (cur != null || !stack.isEmpty()) {
if (cur != null) {
stack.push(cur);
cur = cur.left;
} else {
cur = stack.pop();
result.add(cur.val);
cur = cur.right;
}
}
return result;
}
}
//后序遍历顺序 左-右-中,入栈顺序:中-左-右,出栈顺序:中-右-左,最后翻转结果
class Solution003 {
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> result = new ArrayList<>();
if (root == null) {
return result;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode node = stack.pop();
result.add(node.val);
if (node.left != null) {
stack.push(node.left);
}
if (node.right != null) {
stack.push(node.right);
}
}
Collections.reverse(result);
return result;
}
}
统一迭代
package com.question.solve.leetcode.programmerCarl2._07_binaryTrees;
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class _0000_迭代遍历2 {
}
class Solution01 {//迭代法-前序遍历代码-如下
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> result = new LinkedList<>();
Stack<TreeNode> st = new Stack<>();
if (root != null) st.push(root);
while (!st.empty()) {
TreeNode node = st.peek();
if (node != null) {
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if (node.right != null) st.push(node.right); // 添加右节点(空节点不入栈)
if (node.left != null) st.push(node.left); // 添加左节点(空节点不入栈)
st.push(node); // 添加中节点
st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
} else { // 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop(); // 将空节点弹出
node = st.peek(); // 重新取出栈中元素
st.pop();
result.add(node.val); // 加入到结果集
}
}
return result;
}
}
class Solution02 {//迭代法-中序遍历代码-如下
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> result = new LinkedList<>();
Stack<TreeNode> st = new Stack<>();
if (root != null) st.push(root);
while (!st.empty()) {
TreeNode node = st.peek();
if (node != null) {
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
if (node.right != null) st.push(node.right); // 添加右节点(空节点不入栈)
st.push(node); // 添加中节点
st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
if (node.left != null) st.push(node.left); // 添加左节点(空节点不入栈)
} else { // 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop(); // 将空节点弹出
node = st.peek(); // 重新取出栈中元素
st.pop();
result.add(node.val); // 加入到结果集
}
}
return result;
}
}
class Solution03 {//迭代法-后序遍历代码-如下
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> result = new LinkedList<>();
Stack<TreeNode> st = new Stack<>();
if (root != null) st.push(root);
while (!st.empty()) {
TreeNode node = st.peek();
if (node != null) {
st.pop(); // 将该节点弹出,避免重复操作,下面再将右中左节点添加到栈中
st.push(node); // 添加中节点
st.push(null); // 中节点访问过,但是还没有处理,加入空节点做为标记。
if (node.right != null) st.push(node.right); // 添加右节点(空节点不入栈)
if (node.left != null) st.push(node.left); // 添加左节点(空节点不入栈)
} else { // 只有遇到空节点的时候,才将下一个节点放进结果集
st.pop(); // 将空节点弹出
node = st.peek(); // 重新取出栈中元素
st.pop();
result.add(node.val); // 加入到结果集
}
}
return result;
}
}