>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**
引言
1.复习上周
深度学习pytorch实战-第P2周-彩色图片识别http://t.csdnimg.cn/f5l6F对于上周的学习,数据集是下载的
2.摆正心态
正如K同学所说,学到第三周左右就会有点感觉了,还真是这样,引领我入门,激发了我的兴趣,同时感谢同济子豪兄。
3.本机环境
见上文
4.学习目标
扎扎实实学好习,走好每一步。
一、前期准备
1.设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
2.导入数据
data_dir = './weather_photos/'
print(data_dir)
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames
- 第一步:使用
pathlib.Path()
函数将字符串类型的文件夹路径转换为pathlib.Path
对象。 - 第二步:使用
glob()
方法获取data_dir
路径下的所有文件路径,并以列表形式存储在data_paths
中。 - 第三步:通过
split()
函数对data_paths
中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames
中 - 第四步:打印
classeNames
列表,显示每个文件所属的类别名称。
3.数据可视化
import matplotlib.pyplot as plt
from PIL import Image
# 指定图像文件夹路径
image_folder = './weather_photos/cloudy/'
# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))
# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
img_path = os.path.join(image_folder, img_file)
img = Image.open(img_path)
ax.imshow(img)
ax.axis('off')
# 显示图像
plt.tight_layout()
plt.show()
图片大小处理
total_datadir = './data/'
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
划分数据集(4:1)
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
二、构建简单的CNN网络
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类
参数详解见上文。
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool1 = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.pool2 = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(24*50*50, len(classeNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool1(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool2(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
model
三、训练模型
1.设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2.编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
3.编写测试函数
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
4.正式训练
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
也不是伦茨越多越好
四、结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
五、保存模型并预测
# 1.保存模型
# torch.save(model, 'model.pth') # 保存整个模型
torch.save(model.state_dict(), 'model_state_dict.pth') # 仅保存状态字典
# 2. 加载模型 or 新建模型加载状态字典
# model2 = torch.load('model.pth')
# model2 = model2.to(device) # 理论上在哪里保存模型,加载模型也会优先在哪里,但是指定一下确保不会出错
model2 = Network_bn().to(device) # 重新定义模型
model2.load_state_dict(torch.load('model_state_dict.pth')) # 加载状态字典到模型
# 3.图片预处理
from PIL import Image
import torchvision.transforms as transforms
# 输入图片预处理
def preprocess_image(image_path):
image = Image.open(image_path)
transform = transforms.Compose([
transforms.Resize((224, 224)), # 假设使用的是224x224的输入
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
image = transform(image).unsqueeze(0) # 增加一个批次维度
return image
# 4.预测函数(指定路径)
def predict(image_path, model):
model.eval() # 将模型设置为评估模式
with torch.no_grad(): # 关闭梯度计算
image = preprocess_image(image_path)
image = image.to(device) # 确保图片在正确的设备上
outputs = model(image)
_, predicted = torch.max(outputs, 1) # 获取最可能的预测类别
return predicted.item()
# 5.预测并输出结果
image_path = "./weather_photos/shine/shine101.jpg" # 替换为你的图片路径
prediction = predict(image_path, model)
class_names = ["cloudy", "rain", "shine", "sunrise"] # Replace with your class labels
predicted_label = class_names[prediction]
print("Predicted class:", predicted_label)
Predicted class: shine
# 选取dataloader中的一个图像进行判断
import numpy as np
# 选取图像
imgs,labels = next(iter(train_dl))
image,label = imgs[0],labels[0]
# 选取指定图像并展示
# 调整维度为 [224, 224, 3]
image_to_show = image.numpy().transpose((1, 2, 0))
# 归一化
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image_to_show = std * image_to_show + mean
image_to_show = np.clip(image_to_show, 0, 1)
# 显示图像
plt.imshow(image_to_show)
plt.show()
# 将图像转移到模型所在的设备上(如果使用GPU)
image = image.to(device)
# 预测
with torch.no_grad():
output = model(image.unsqueeze(0)) # 添加批次维度
# 输出预测结果
_, predicted = torch.max(output, 1)
class_names = ["cloudy", "rain", "shine", "sunrise"] # Replace with your class labels
predicted_label = class_names[predicted]
print(f"Predicted: {predicted.item()}, Actual: {label.item()}")
如何保存模型可以看这篇http://t.csdnimg.cn/yCkr7
六,总结
构建数据集中
此次数据集不是直接从网上下载的,而是保存在本地的,那么我们构建数据集的代码就有3步了,第一步就是从我们的本地获取数据集,使用pathlib将路径转化为pathlib.path对象,使用glob方法获取路径下的所有文件路径并保存到datapath,通过spilt分割路径并保存在classname中,打印classname列表。这是在确保路径文件夹正确,且分类正确。接下来可以使用matplotlib.pyplot和PIL来获取图片,并可视化,过程中使用列表推导式加载和显示图像,第二步划分数据集,4:1比例划分并保存为dataset对象,第三步定义batch_size大小,使用dataloder加载器来管理数据,
构建cnn网络中
主要是特征提取网络和分类网络的构建,首先进行一个网络初始化init,定义网络结构,卷积层1,bn层1,(nn.BatchNorm2d(12)
是 PyTorch 中的一个批量归一化层。批量归一化用于加速神经网络的训练过程,并提高模型的泛化能力。在卷积神经网络中),卷积2,bn2,池化1,卷积4,bn层4,卷积5,bn层5,池化层2,全连接层1,然后定义进行前向传播结构,并在每一层(卷积+bn)进行relu函数返回给x,然后再池化,再relu,最后拉平,使用view函数,并传给fc层进行分类。
训练模型中
设置超参数,loss一般用交叉熵,学习率一般0.0001,opt采用sgd或者adam
编写训练函数中
编写训练函数时候,要使用size知道dataloaer加载的dataset大小长度,每batchnum就是dataloder的长度,定义训练集损失和准确率,获取图片和标签从dataloder中,计算误差,进行啊反向传播更新参数,每一步自动更新,记录acc和loss,最后计算train的acc和loss
编写测试函数同理
同理,再取图像之前加个当不进行训练时,停止梯度更新就行
来到了正式训练
定义epoch轮次,训练和特使的acc和loss定义,便于后续存储,轮次循环,model.train和model.eval,然后把每一批次的准确率loss都存在列表里,最后输出
最后可视化
定义plt窗口,可视化列表train_acc等等
保存模型
参上,现在我还有点不懂,慢慢学吧