【Linux网络编程】UDP协议

news2024/10/5 20:25:04

UDP协议

  • 1.再谈端口号
    • 端口号划分
    • 认识知名端口号(Well-Know Port Number)
    • 两个问题
    • netstat
    • pidof
  • 2.UDP协议
    • 2.1UDP的特点
    • 2.2面向数据报
    • 2.3UDP的缓冲区
    • 2.4UDP使用注意事项
    • 2.5基于UDP的应用层协议

在这里插入图片描述

喜欢的点赞,收藏,关注一下把!在这里插入图片描述

1.再谈端口号

端口号(Port)标识了一个主机上进行通信的不同的应用程序。

因为不同应用程序端口号不同,尽管被部署在同一台主机上IP地址相同,但是端口号不同各自运行各自的,所以一台主机可以同时部署不同端口号不同的服务。
在这里插入图片描述
在TCP/IP协议中,用 “源IP”,“源端口号”,“目的IP”, “目的端口号”, “协议号” 这样一个五元组来标识一个通信(可以通过netstat -n查看);

这里协议号就相当于具体一个协议的名称,也就是标识客户端和服务器用什么协在通信。其实目的端口号就已经确定了用那个协议,如:22 ssh协议。

在这里插入图片描述

实际上不管是用同一个客户端上不同的请求或者不同的客户端去请求同一个服务器,都能够准确区分清楚这个请求时从哪来的。全都是得益于完整的报文。

TCP解决通信双方端口问题,IP解决通信双方IP地址问题,所以TCP/IP解决网络通信的问题。

应用层帮我们解决应用的问题,但是要解决应用问题之前要先解决通信的问题,要解决通信的问题要先通过五元组标识一段通信。五元组被分散在TCP/IP协议各自中处理的。

端口号划分

  • 0 - 1023: 知名端口号, HTTP, FTP, SSH等这些广为使用的应用层协议, 他们的端口号都是固定的.
  • 1024 - 65535: 操作系统动态分配的端口号. 客户端程序的端口号, 就是由操作系统从这个范围分配的.

认识知名端口号(Well-Know Port Number)

有些服务器是非常常用的, 为了使用方便, 人们约定一些常用的服务器, 都是用以下这些固定的端口号:

  • ssh服务器, 使用22端口
  • ftp服务器, 使用21端口
  • telnet服务器, 使用23端口
  • http服务器, 使用80端口
  • https服务器, 使用443

执行下面的命令, 可以看到知名端口号

cat /etc/services

我们自己写一个程序使用端口号时, 要避开这些知名端口号

两个问题

  1. 一个进程是否可以bind多个端口号?
  2. 一个端口号是否可以被多个进程bind?

数据一定是自底向上交付的,一定是从端口号唯一交付给进程,所以我们要保持从端口号到进程的唯一关系。因此2错。

一个进程绑定多个端口号并不破坏端口号到进程的唯一性,从任何端口号到进程都是唯一的,如一个进程绑定两个端口号一个端口号用来发数据,一个端口号用来发指令,因此1对。

netstat

netstat是一个用来查看网络状态的重要工具.
语法:netstat [选项]
功能:查看网络状态

常用选项

  • n 拒绝显示别名,能显示数字的全部转化成数字
  • l 仅列出有在 Listen (监听) 的服務状态
  • p 显示建立相关链接的进程名
  • t (tcp)仅显示tcp相关选项
  • u (udp)仅显示udp相关选项
  • a (all)显示所有选项,默认不显示LISTEN相关

pidof

在查看服务器的进程id时非常方便.

语法:pidof [进程名]
功能:通过进程名, 查看进程id

在这里插入图片描述

xargs

把管道上一个进程输入的管道的内容,以命令行参数的方式拼接在后接命令的后面

在这里插入图片描述

2.UDP协议

不管我们未来学习什么协议都要带着这两个问题去学习

  1. 学习所有的协议,都有它的报头和有效载荷
  2. 如何解包(如何将报头和有效载荷进行分离),如何分用

UDP协议端格式

下面看到的就是UDP报文,报文里面有个数据,该数据就是我们从应用层交付给UDP的所有数据就称之为整个报文的有效载荷,有效载荷上面的就是UDP报头。
在这里插入图片描述

为什么我们在应用层编写代码的时候,每一次写端口号的时候,都是uint16_t呢?
因为现在所学到的传输层和网络层属于Linux操作系统内部,OS内部源端口和目的端口用的是16位的,决定了应用层的端口是16位。

校验和我们不谈,先对原始数据做校验,校验之后把值填进行,然后把数据发给对方之后,对方以同样的方式对整个报文做校验,如果校验值匹配说明报文没有发生问题。不匹配就直接丢弃。

下面具体来看UDP报文是如何封装解包、如何分用

这是我们任何地方都会告诉我们的UDP报文结构,上面4个部分加起来8个字节就是报头,下面是有效载荷,就这么简单。那是如何做到将报头和有效载荷封装和分离的呢?

在这里插入图片描述

根据之前我们学到的知识,要么规定特殊符号\r\n来表示报头和有效载荷,要么使用自描述字段,比如说之前自定义协议里的报文前面带上长度。http是用Content-Length的方案表征有效载荷的长度。

那UDP这里是怎么表征字节对应的报文,将报头和有效载荷封装和解包的呢?

UDP采用固定长度的报头,将报头和有效载荷分开。也就是说未来UDP报头向上交付的时候,传输层会固定的把前8字节报头直接移走,将剩下的有效载荷直接向上交付就行了。

如何分用呢? 因为应用层有很多协议,如http、https,所以传输层怎么知道将有效载荷交给上层哪一个协议呢?

我们有16位目的端口号,在应用层特定的进程绑定了特定的端口号,根据目的端口号交给特定的进程。

这上面的内容其实我们都知道,但是我们不了解的其实不是这个,而是你这报头到底是个什么东西?理解UDP报头

在这里插入图片描述
首先传输层网络层都属于Linux内核,而Linux内核是用C语言写的!
前面8个字节是UDP的报头,所谓的报头不就是OS层面定制的协议吗
我们以前在应用层不是定义过协议吗,不就是相当于在应用层的结构化数据吗,说白了不就是一个类或结构体吗?
所以所谓的报头其实就是一种结构化数据对象

一般在定协议的时候采用的是结构体或者位端的方式。

所谓报头定的协议就是下面这个玩意
在这里插入图片描述

所谓的添加报头,当程序员在应用层调用sendto发送数据,这个sendto其实并没有把数据直接发送到网络里,而是把数据拷贝UDP这个协议中。

在拷贝之前先做这样一个事情,我们以伪代码方式看一下这个过程,首先UDP有hdr所指向的一段空间,然后start指向hdr加一个UDP报头协议大小的地方,然后把数据拷贝到start所指向的空间,然后在UDP报头里填写对应的信息。

1.这不是把我们的有效载荷放在后面
2.我们不就把报头填写好了吗

至此不就形成了一个完整的UDP报头吗!然后继续向下进行交付!

在这里插入图片描述
未来收到UDP报文不是固定大小吗,收到报文之后指针指向开始,将指针强转成struct udp_hdr类型,前8个字节里面每一个字节不就可以直接取码吗,取完之后指针+8,不就可以拿有效载荷了吗。

在看到UDP报文这张图,脑海中要立即想到协议就是一个结构化的数据,在内核中这个协议一定有具体的实现方式,结构化或者位端。最后添加报头就是把数据放在缓冲区里然后在缓冲区前面把报头相关字段拿过来,这个报文就构建好了,继续向下交付就好了!

在这里插入图片描述

未来我们学习到所有协议,管你是什么报头,只要你是OS里的,它的所有字段划分最终都是转为某种结构体或者位端。
在这里插入图片描述
到这里UDP报头就学完了。因为UDP不提供任何可靠性,所有注定它不用为了可靠性做更多的工作。也就意味着它很简单不复杂。

2.1UDP的特点

UDP传输的过程类似于寄信

  • 无连接: 知道对端的IP和端口号就直接进行传输, 不需要建立连接
  • 不可靠: 没有确认机制, 没有重传机制; 如果因为网络故障该段无法发到对方, UDP协议层也不会给应用层返回任何错误信息(也就是说丢包了UDP说明也不做)
  • 面向数据报: 不能够灵活的控制读写数据的次数和数量

2.2面向数据报

面向数据报可以理解成面向快递,你的朋友给你寄了一个、两个、三个快递,未来你在收的一定是一个、两个、三个快递。你朋友发了三个快递你一定是收三个快递,不会收半个、一个半、两个等,他发几个你就收几个。客户端曾经发了一个报文,你在调用recvfrom成功的时候,这个函数必定把一个完整的报文全部读上来。这叫做UDP数据报。

其一,在写udp的代码时明显可以感觉到不像写tcp网页版计数器哪里首先必须要先读到一个完整的报文,在udp哪里从来没有说过这样的话,因为用udp直接可以保证读到一个完整报文。
其二,对方调sendto发送10次报文,对方必须调用recvfrom接收10次报文,次数是1:1的。

这就是面向数据报,使用UDP协议我们不用考虑在应用层enlength增加报头,delength删除报头,用来区分数据,只用考虑序列化和反序列化就可以了。

光谈udp不太清楚,这里简单说一下tcp,它是面向字节流,特点是发数据可以发十几二十次,但接收方并不知道你曾经发了多少次,它也不知道报文和报文之间有什么边界,它只是由上层告诉我去读多少,至于怎么读到一个完整的报文是由应用层自己去定协议自己去从字节流中提取一个完整报文。所有就有写tcp要自己定制报头,然后把有效载荷提取出来,序列化。。。,这都是因为它没有报文和报文之间的边界。

应用层交给UDP多长的报文, UDP原样发送, 既不会拆分, 也不会合并;

用UDP传输100个字节的数据:

  • 如果发送端调用一次sendto, 发送100个字节, 那么接收端也必须调用对应的一次recvfrom, 接收100个字节; 而不能循环调用10次recvfrom, 每次接收10个字节

2.3UDP的缓冲区

我们目前已经知道,在应用层调用的read/write/sendto/recvfrom/send/recv,并没有把数据之间发到网络中也没有能力做到这个事情,而是通过这些接口把数据交给下层然后继续往下交付,每一层都有自己的协议,所有每一层都要添加对应的报头。

在这里插入图片描述

知道这个我们以TCP缓冲区为切入点谈谈UDP缓冲区的问题。

实际上我们用的网络IO接口,其实并不直接是发送和接收窗口,可是拷贝窗口!

客户端和服务器用tcp协议通信,实际上在各自的传输层里面要给自己维护发送和接收缓冲区,比如用的send/write接口,实际上并不是把我们自己在应用层定义的缓冲区里数据发送到网络里,而是拷贝到自己的发送缓冲区,传输层属于OS,所有是由OS自己控制把发送缓冲区的数据,什么时候发,发多少,从我的发送缓冲区把数据经过网络发送到对方的接收缓冲区。然后对方recv/read读取也不是从网络里把数据读取上来,而把你发过来的数据从接收缓冲区拷贝到应用层定义的缓冲区(如自己写的outbuffer),

在这里插入图片描述

所以曾经调用的read/write/sendto/recvfrom/send/recv这些接口本质是拷贝函数!

client->server:用的是c发送缓冲区、s接收缓冲区。
那同时server->client,用的s发送缓冲区,c接收缓冲区。
因为发送缓冲区,接收缓冲区我们双方都各有一对,所以我们称这样的通信方式叫做全双工(我在给你发消息的时候,你也可以给我发)。

当把这些数据拷贝到缓冲区里,应用层就直接返回了。所以这个缓冲区除了支持全双工站在应用层角度上看还帮我们提供发送数据的效率。然后应用层继续执行其他逻辑不用等了。这个缓冲区数据什么时候发送,发多少,丢包怎么办等由OS也就是传输层中TCP协议自主控制,所以TCP协议全称叫做传输控制协议。而用户不参与,只要把数据从应用层拷贝到OS内部就可以了。

有人往里面放数据,有人把数据从缓冲区里刷新到网络里,这个模式不就与生产消费者模式相似吗!天然就具备生产端和消费端解耦支持忙闲不均。 不就是在正常发送时让应用层在用拷贝行为替代发送行为减少了client时间成本问题。

什么是以TCP来讲的,那UDP呢?

  • UDP没有真正意义上的 发送缓冲区. 调用sendto会直接交给内核, 由内核将数据传给网络层协议进行后续的传输动作;
    UDP没有真正意义上的 发送缓冲区,这是因为它不需要,因为UDP把报头一加直接交给下层,它没有可靠性机制,也不需要把数据暂存下来。

  • UDP具有接收缓冲区. 但是这个接收缓冲区不能保证收到的UDP报文的顺序和发送UDP报文的顺序一致; 如果缓冲区满了, 再到达的UDP数据就会被丢弃;

UDP的socket既能读, 也能写, 这个概念叫做 全双工

2.4UDP使用注意事项

我们注意到, UDP协议首部中有一个16位的最大长度. 说的是一个UDP能传输的最大报文长度是2^16 --> 2^10 * 2^6=64K(包括UDP首部)
在这里插入图片描述

然而64K在当今的互联网环境下, 是一个非常小的数字.
如果我们需要传输的数据超过64K, 就需要在应用层手动的分包, 多次发送, 并在接收端手动拼装;

2.5基于UDP的应用层协议

  • NFS: 网络文件系统
  • TFTP: 简单文件传输协议
  • DHCP: 动态主机配置协议
  • BOOTP: 启动协议(用于无盘设备启动)
  • DNS: 域名解析协议

当然, 也包括你自己写UDP程序时自定义的应用层协议;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1595665.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第十五届蓝桥杯大赛软件赛省赛 C/C++ 大学 B 组

试题 C: 好数 时间限制 : 1.0s 内存限制: 256.0MB 本题总分:10 分 【问题描述】 一个整数如果按从低位到高位的顺序,奇数位(个位、百位、万位 )上 的数字是奇数,偶数位(十位、千位、十万位 &…

(三)C++自制植物大战僵尸游戏项目结构说明

植物大战僵尸游戏开发教程专栏地址http://t.csdnimg.cn/ErelL 一、项目结构 打开项目后,在解决方案管理器中有五个项目,分别是libbox2d、libcocos2d、librecast、libSpine、PlantsVsZombies五个项目,除PlantsVsZombies外,其他四个…

计算机网络 Cisco虚拟局域网划分

一、实验内容 1、分别把交换机命名为SWA、SWB 2、划分虚拟局域网 valn ,并将端口静态划分到 vlan 中 划分vlan 方法一:在全局模式下划分vlan,在SWA交换机上创建三个vlan,分别为vlan2,vlan3,vlan4。 方…

第十五篇【传奇开心果系列】Python自动化办公库技术点案例示例:深度解读Python 自动化处理图像在各行各业的应用场景

传奇开心果博文系列 系列博文目录Python自动化办公库技术点案例示例系列 博文目录前言一、行业应用场景介绍二、 **计算机视觉研究与开发示例代码**三、人工智能与机器学习示例代码四、医疗健康领域示例代码五、制造业与质量控制示例代码六、农业与环境科学示例代码七、电子商务…

C语言单链表详解

链表和顺序表的区别 顺序表的底层存储空间是连续的,链表的底层存储空间是不连续的,链表的每个节点需要额外的指针来指向下一个节点,占用更多的存储空间。 顺序表的随机访问性能好,时间复杂度为O(1),链表的随机访问性能…

利用Sentinel解决雪崩问题(一)流量控制

1、解决雪崩问题的常见方式有四种: 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待;舱壁模式:限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离;熔断降级:由断路器统计业务…

【备战测开】—— 编程语言Python(二)

续上上篇的讲解:【备战测开】—— 编程语言Python(一) 6 面向对象编程 所谓的面向对象其实就是把属性和方法封装起来,以供重复调用 6.1 类和对象 参考博客:python类和对象最全详解(持续修订中&#xff…

网络篇06 | 应用层 自定义协议

网络篇06 | 应用层 自定义协议 01 固定协议设计(简化版)1)总体设计2)值设计 02 可变协议设计(进阶版)1)固定头(Fixed Header)2)可变头(Variable H…

SpringBoot新增菜品模块开发(事务管理+批量插入+主键回填)

需求分析与设计 一:产品原型 后台系统中可以管理菜品信息,通过 新增功能来添加一个新的菜品,在添加菜品时需要选择当前菜品所属的菜品分类,并且需要上传菜品图片。 新增菜品原型: 当填写完表单信息, 点击"保存…

【御控物联】物联网平台设备接入-JSON数据格式转化(场景案例四)

文章目录 一、背景二、解决方案三、在线转换工具四、技术资料 一、背景 物联网平台是一种实现设备接入、设备监控、设备管理、数据存储、消息多源转发和数据分析等能力的一体化平台。南向支持连接海量异构(协议多样)设备,实现设备数据云端存…

绝地求生:杜卡迪来了,这些摩托车技巧不学一下吗?

摩托车在远古版本和现在完全不一样,虽然容易翻车造就了一批玩家“摩托杀手”的外号,但是速度可比今天快多了。 后来在蓝洞的削弱了其加速度,虽然资料上写着最高时速155km/h,但是平时游戏中一般只能拉到110~120km/h。这里写一点摩托…

Java GUI制作双人对打游戏(上)

文章目录 前言什么是Java GUI一、打开IDEA 新建一个Maven项目(后续可以打包、引入相关依赖也很容易)二、引入依赖三.绘制UI界面四.绘制JPanel面板总结 前言 什么是Java GUI Java UI,即Java用户界面,是指使用Java编程语言创建的图形用户界面&#xff08…

第一节:什么是操作系统

什么是操作系统 一、一台计算机的组成部分1、计算机能干啥2、谈谈计算机硬件 二、什么是操作系统三、学习操作系统的层次 一、一台计算机的组成部分 如下图所示: 这就是就是构成一台计算机的组成部分 1、计算机能干啥 ∙ \bullet ∙计算机是我们专业吃饭的家伙&a…

《springcloud alibaba》 六 微服务链路跟踪skywalking

目录 准备调整配置接入多个微服务网关项目调整order-seata项目stock-seata项目测试 接入网关微服务 skywalking持续化到mysql自定义链路跟踪pom .xmlorderControllerOrderServiceOrderDaoOrderTblMapper.xml测试 性能剖析日志tid打印pom.xmllogback-spring.xml日志收集启动项目…

2024年MathorCup数学应用挑战赛C题思路分析(妈妈杯)

2024年第十四届MathorCup数学应用挑战赛C题解析 文章目录 题目概览第一问:货量预测第二问:运输线路变化的预测第三问:单目标优化第四问:排班计划的优化 MATLAB代码框架货量预测人员排班 2024年的MathorCup数学应用挑战赛再次为我…

硬盘分区无法访问,数据恢复与防范全攻略

当我们尝试打开某个硬盘分区时,有时会遇到分区无法访问的困扰。这不仅让我们无法读取分区内的文件,还可能导致重要数据的丢失。面对这种情况,我们该如何应对呢?本文将详细解析硬盘分区无法访问的原因,并给出两种有效的…

加速度JUSDO | 电子元器件商城行业调研及运营方案

一、行业背景与竞品分析 随着电子元器件行业的快速发展,线上元器件商城已成为行业交易的重要渠道。目前市场上存在多个知名的元器件商城,如立创、云汉芯城、贸泽商城等,它们都提供了丰富的元器件产品和便捷的线上交易服务。 立创商城&#x…

构建第一个ArkTS应用之stateStyles:多态样式

Styles和Extend仅仅应用于静态页面的样式复用,stateStyles可以依据组件的内部状态的不同,快速设置不同样式。这就是我们本章要介绍的内容stateStyles(又称为:多态样式)。 概述 stateStyles是属性方法,可以…

Web前端 Javascript笔记1

为什么学习 JavaScript? JavaScript 是 web 开发人员必须学习的 3 门语言中的一门: HTML 定义了网页的内容CSS 描述了网页的布局JavaScript 控制了网页的行为 JavaScript 是可插入 HTML 页面的编程代码。 JavaScript 插入 HTML 页面后,可由所有的现代浏…

Qt实现XYModem协议(一)

1 概述 Kermit文件运输协议提供了一条从大型计算机下载文件到微机的途径。它已被用于进行公用数据传输。 其特性如下: Kermit文件运输协议是一个半双工的通信协议。它支持7位ASCII字符。数据以可多达96字节长度的可变长度的分组形式传输。对每个被传送分组需要一个确认。Kerm…