消息中间件Kafka分布式数据处理平台

news2024/11/17 23:31:22

目录

一.Kafka基本介绍

1.定义

2.特点

(1)高吞吐量、低延迟

(2)可扩展性

(3)持久性、可靠性

(4)容错性

(5)高并发

3.系统架构

(1)Broker(服务代理节点)

(2)Producer(生产者)

(3)Consumer(消费者)

(4)Consumer Group(消费组)

(5)ZooKeeper

(6)Topic(主题)

(7)Partition(分区)

(8)Replica(副本)

(9)Leader and Follower

(10)Offset(偏移量)

二.部署ZooKeeper+Kafka集群

1.环境准备

2.下载安装包

3.修改配置文件

4.设置环境变量

5.配置ZooKeeper启动脚本

6.设置开机自启并启动

7.Kafka命令行操作

(1)创建topic

(2)查看当前服务器中的所有topic

(3)查看某个topic的详情

(4)发布消息

(5)消费消息

(6)修改分区数

(7)删除topic


一.Kafka基本介绍

1.定义

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。
最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。
官方网址:https://kafka.apache.org/

2.特点

(1)高吞吐量、低延迟

Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。

(2)可扩展性

kafka 集群支持热扩展

(3)持久性、可靠性

消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

(4)容错性

允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)

(5)高并发

支持数干个客户端同时读写

3.系统架构

  • 生产者生产数据传给broker即kafka服务器集群
  • kafka集群将数据存储在topic主题中,每个topic主题中有多个分片(分片做了备份在其他topic)
  • 分片中存储数据,kafka集群注册在zookeeper中,zookeeper通知消费者kafka服务器在线列表
  • 消费者收到zookeeper通知的在线列表,从broker中拉取数据
  • 消费者保存偏移量到zookeeper中,以便记录自己宕机消费到什么地方
(1)Broker(服务代理节点)
  • 服务代理节点,其实就是一个kafka实例或服务节点,多个broker构成了kafka集群
  • 一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic
(2)Producer(生产者)
  • 生产者,也就是写入消息的一方,将消息写入broker中
  • 即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中
  • broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中
  • 生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition
     
(3)Consumer(消费者)
  • 消费者,也就是读取消息的一方,从broker中pull 拉取数据
  • 可以消费多个 topic 中的数据
(4)Consumer Group(消费组
  • 消费者组,由多个 consumer 组成
  • 所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。可为每个消费者指定组名,若不指定组名则属于默认的组
  • 将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力
  • 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,防止数据被重复读取
  • 消费者组之间互不影响
  • 消费组。一个或多个消费者构成一个消费组,不同的消费组可以订阅同一个主题的消息且互不影响
     
(5)ZooKeeper
  • kafka使用zookeeper来管理集群的元数据 meta 信息,以及控制器的选举等操作
  • 由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,需要从故障前的位置的继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,以便故障恢复后继续消费
  • zookeeper的作用就是,生产者push数据到kafka集群,就必须要找到kafka集群的节点在哪里,这些都是通过zookeeper去寻找的。消费者消费哪一条数据,也需要zookeeper的支持,从zookeeper获得offset,offset记录上一次消费的数据消费到哪里,这样就可以接着下一条数据进行消费
(6)Topic(主题
  • 可以理解为一个队列,生产者和消费者面向的都是一个 topic。
  • 类似于数据库的表名或者 ES 的 index
  • 物理上不同 topic 的消息分开存储
(7)Partition(分区
  • 分区,同一个主题下的消息还可以继续分成多个分区,一个分区只属于一个主题
  • 为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序
  • 每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾

Partation 数据路由规则:
1.指定了 patition,则直接使用
2.未指定 patition 但指定 key(相当于消息中某个属性),通过对 key 的 value 进行 hash 取模,选出一个 patition
3.patition 和 key 都未指定,使用轮询选出一个 patition

每条消息都会有一个自增的编号,用于标识消息的偏移量,标识顺序从 0 开始。

每个 partition 中的数据使用多个 segment 文件存储。

如果 topic 有多个 partition,消费数据时就不能保证数据的顺序。严格保证消息的消费顺序的场景下(例如商品秒杀、 抢红包),需要将 partition 数目设为 1。

  • broker 存储 topic 的数据。如果某 topic 有 N 个 partition,集群有 N 个 broker,那么每个 broker 存储该 topic 的一个 partition。
  • 如果某 topic 有 N 个 partition,集群有 (N+M) 个 broker,那么其中有 N 个 broker 存储 topic 的一个 partition, 剩下的 M 个 broker 不存储该 topic 的 partition 数据。
  • 如果某 topic 有 N 个 partition,集群中 broker 数目少于 N 个,那么一个 broker 存储该 topic 的一个或多个 partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致 Kafka 集群数据不均衡。
(8)Replica(副本
  • 副本,一个分区可以有多个副本来提高容灾性
  • 为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失,且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本,一个 leader 和若干个 follower
(9)Leader and Follower
  • 分区有了多个副本,那么就需要有同步方式。kafka使用一主多从进行消息同步,主副本提供读写的能力,而从副本不提供读写,仅仅作为主副本的备份
  • 每个 partition 有多个副本,其中有且仅有一个作为 Leader,Leader 是当前负责数据的读写的 partition
  • Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower,Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
  • 如果 Leader 故障,则从 Follower 中选举出一个新的 Leader。
  • 当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower
(10)Offset(偏移量)
  • 可以唯一的标识一条消息,分区中的每一条消息都有一个所在分区的偏移量,这个偏移量唯一标识了该消息在当前这个分区的位置,并保证了在这个分区的顺序性,不过不保证跨分区的顺序性
  • 偏移量决定读取数据的位置,不会有线程安全的问题,消费者通过偏移量来决定下次读取的消息(即消费位置)
  • 消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息
  • 某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制
  • 消息最终还是会被删除的,默认生命周期为 1 周(7*24小时)
     

二.部署ZooKeeper+Kafka集群

1.环境准备

服务器类型系统和IP地址需要安装的组件
Zookeeper服务器1CentOS7.4(64 位) 192.168.227.100jdk、ZooKeeper
Zookeeper服务器2CentOS7.4(64 位) 192.168.227.101jdk、ZooKeeper
Zookeeper服务器3CentOS7.4(64 位) 192.168.227.102jdk、ZooKeeper

需要部署ZooKeeper集群(详情请见ZooKeeper分布式应用程序协调服务-CSDN博客)三台服务器步骤相同,此处只展示一台设备的搭建

2.下载安装包

1. #下载安装包
cd /opt
wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz
 
1.1 #有压缩包就直接拖进来
cd /opt
rz -E
 
2. #安装Kafka
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka

3.修改配置文件

1. #移动并将配置文件进行备份
cd /usr/local/kafka/config/
cp server.properties{,.bak}
 
2. #修改
vim server.properties
-------------------------------------------
broker.id=0                           
#21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 broker.id=1、broker.id=2
 
listeners=PLAINTEXT://192.168.227.100:9092    
#31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
 
num.network.threads=3    
#42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
 
num.io.threads=8         
#45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
 
socket.send.buffer.bytes=102400       #48行,发送套接字的缓冲区大小
 
socket.receive.buffer.bytes=102400    #51行,接收套接字的缓冲区大小
 
socket.request.max.bytes=104857600    #54行,请求套接字的缓冲区大小
 
log.dirs=/usr/local/kafka/logs        #60行,kafka运行日志存放的路径,也是数据存放的路径
 
num.partitions=1    
#65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
 
num.recovery.threads.per.data.dir=1    #69行,用来恢复和清理data下数据的线程数量
 
log.retention.hours=168    
#103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除
 
log.segment.bytes=1073741824    
#110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件
 
zookeeper.connect=192.168.227.100:2181,192.168.227.101:2181,192.168.227.102:2181    
#123行,配置连接Zookeeper集群地址
------------------------------------------------

4.设置环境变量

1. #修改环境变量
vim /etc/profile
----------------------------------------
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/bin
-----------------------------------------
 
2. #刷新配置文件
source /etc/profile
 
3. #查看环境变量
echo $PATH

5.配置ZooKeeper启动脚本

vim /etc/init.d/kafka
------------------------------------------------
#!/bin/bash
#chkconfig:2345 22 88
#description:Kafka Service Control Script
KAFKA_HOME='/usr/local/kafka'
case $1 in
start)
	echo "---------- Kafka 启动 ------------"
	${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties
;;
stop)
	echo "---------- Kafka 停止 ------------"
	${KAFKA_HOME}/bin/kafka-server-stop.sh
;;
restart)
	$0 stop
	$0 start
;;
status)
	echo "---------- Kafka 状态 ------------"
	count=$(ps -ef | grep kafka | egrep -cv "grep|$$")
	if [ "$count" -eq 0 ];then
        echo "kafka is not running"
    else
        echo "kafka is running"
    fi
;;
*)
    echo "Usage: $0 {start|stop|restart|status}"
esac
------------------------------------------------------------------

6.设置开机自启并启动

1. #设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka
 
2. #分别启动 Kafka
service kafka start

7.Kafka命令行操作

(1)创建topic
kafka-topics.sh --create --zookeeper 192.168.227.100:2181,192.168.227.101:2181,192.168.227.102:2181 --replication-factor 2 --partitions 3 --topic test
 
############################################
--zookeeper:定义 zookeeper 集群服务器地址,如果有多个 IP 地址使用逗号分割,一般使用一个 IP 即可
--replication-factor:定义分区副本数,1 代表单副本,建议为 2 
--partitions:定义分区数 
--topic:定义 topic 名称

(2)查看当前服务器中的所有topic
kafka-topics.sh --list --zookeeper 192.168.227.100:2181,192.168.227.101:2181,192.168.227.102:2181

(3)查看某个topic的详情
kafka-topics.sh  --describe --zookeeper 192.168.227.100:2181,192.168.227.101:2181,192.168.227.102:2181

(4)发布消息
kafka-console-producer.sh --broker-list 192.168.227.100:9092,192.168.227.101:9092,192.168.227.102:9092  --topic test

(5)消费消息
kafka-console-consumer.sh --bootstrap-server 192.168.227.100:9092,192.168.227.101:9092,192.168.227.102:9092 --topic test --from-beginning
#--from-beginning:会把主题中以往所有的数据都读取出来

(6)修改分区数
kafka-topics.sh --zookeeper 192.168.227.100:2181,192.168.227.101:2181,192.168.227.102:2181 --alter --topic test --partitions 6

(7)删除topic
kafka-topics.sh --delete --zookeeper 192.168.227.100:2181,192.168.227.101:2181,192.168.227.102:2181 --topic test

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1594800.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

oracle 19c 主备 补丁升级19.22

补丁升级流程 备库升级 备库备份$ORALCE_HOME du -sh $ORACLE_HOME ​​​​​​​ 备份目录将dbhome_1压缩 cd $ORACLE_HOME cd .. Ls tar -cvzf db_home.tar.gz db_home_1 /opt/oracle/product/19c ​​​​​​​​​​​​​​ 关闭监听关闭数据库查看sq…

【VS2019】x64 Native Tools Command Prompt for Vs 2019使用conda命令进入环境

【VS2019】x64 Native Tools Command Prompt for Vs 2019使用conda命令进入环境 安装完VS2019后,打开终端x64 Native Tools Command Prompt for Vs 2019,直接运行conda会出现‘conda’ 不是内部或外部命令,也不是可运行的程序 原因分析&am…

【Java虚拟机】三色标记、增量更新、原始快照、记忆集与卡表

三色标记、增量更新、原始快照、记忆集与卡表 三色标记基本原来错标、漏标错标漏标 增量更新基本原理写屏障 原始快照基本原理为什么G1使用原始快照而不用增量更新。 记忆集与卡表 三色标记 基本原来 三色标记是JVM的垃圾收集器用于标记对象是否存活的一种方法。 三色是指黑…

【opencv】示例-train_HOG.cpp 训练和测试基于支持向量机(SVM)的行人检测器

#include "opencv2/imgproc.hpp" // 包含OpenCV图像处理头文件 #include "opencv2/highgui.hpp" // 包含OpenCV高层GUI(图形用户界面)头文件 #include "opencv2/ml.hpp" // 包含OpenCV机器学习模块头文件 #includ…

软考 - 系统架构设计师 - 质量属性例题 (2)

问题1: 、 问题 2: 系统架构风险:指架构设计中 ,潜在的,存在问题的架构决策所带来的隐患。 敏感点:指为了实现某个质量属性,一个或多个构件所具有的特性 权衡点:指影响多个质量属性…

(一)基于IDEA的JAVA基础15

还是先来说一下: Arrays工具类 Arrays是java.util包提供的工具类 提供了操作数组的方法,如排序,查询等。 如排序(升序)使用sort方法 语法: Arrays.sort(数组名); 还是直接写来看看: public class Test01 { public static void main(String[] args)…

vscode开发 vue3+ts 的 uni-app 微信小程序项目

创建uni-app项目: # 创建用ts开发的uni-app npx degit dcloudio/uni-preset-vue#vite-ts 项目名称 # 创建用js开发的uni-app npx degit dcloudio/uni-preset-vue#vite 项目名称VS Code 配置 为什么选择 VS Code ? HbuilderX 对 TS 类型支持暂不完善VS…

深入理解GCC/G++在CentOS上的应用

文章目录 深入理解GCC/G在CentOS上的应用编译C和C源文件C语言编译C语言编译 编译过程的详解预处理编译汇编链接 链接动态库和静态库静态库和动态库安装静态库 结论 深入理解GCC/G在CentOS上的应用 在前文的基础上,我们已经了解了CentOS的基本特性和如何在其上安装及…

一个基于单片机内存管理-开源模块

概述 此模块是一位大佬写的应用于单片机内存管理模块mem_malloc,这个mem_malloc的使用不会产生内存碎片,可以高效利用单片机ram空间。 源码仓库:GitHub - chenqy2018/mem_malloc mem_malloc介绍 一般单片机的内存都比较小,而且没有MMU,malloc 与free的使用容易造成内存碎…

springboot抑郁症科普知识测试系统ssm-java

本系统设计了二种角色:管理员,用户。通过此系统,管理员可以在线视频、案例展示、、测试试卷、测试试题进行测试。以及在线对测试试卷进行批阅和批量删除,用户可以对自己的测试试卷进行测试,对管理员已经批阅过的试卷可…

【opencv】示例-stereo_calib.cpp 基于OpenCV的立体视觉相机校准的完整示例

// 包含OpenCV库中用于3D校准的相关头文件 #include "opencv2/calib3d.hpp" // 包含OpenCV库中用于图像编码解码的相关头文件 #include "opencv2/imgcodecs.hpp" // 包含OpenCV库中用于GUI操作的相关头文件 #include "opencv2/highgui.hpp" // 包…

在Mac中打开终端的3种方法

在使用Mac时,有时需要深入研究设置,或者完成一些开发人员级的命令行任务。为此,你需要终端应用程序来访问macOS上的命令行。下面是如何启动它。 如何使用聚焦搜索打开终端 也许打开终端最简单、最快的方法是通过聚焦搜索。要启动聚焦搜索&a…

【算法分析与设计】全排列

📝个人主页:五敷有你 🔥系列专栏:算法分析与设计 ⛺️稳中求进,晒太阳 题目 给定一个不含重复数字的整数数组 nums ,返回其 所有可能的全排列 。可以 按任意顺序 返回答案。 示例 示例 1&#xff1…

LoRA微调

论文:LoRA: Low-Rank Adaptation of Large Language Models 实现:microsoft/LoRA: Code for loralib, an implementation of “LoRA: Low-Rank Adaptation of Large Language Models” (github.com) 摘要 自然语言处理的一个重要的开发范式包括&#…

51单片机实验03-单片机定时/计数器实验

目录 一、实验目的 二、实验说明 1、51单片机有两个16位内部计数器/定时器(C/T, Counter/Timer)。 2、模式寄存器TMOD 1) M1M0工作模式控制位; 2) C/T定时器或计数器选择位: 3)GATE定时器/计数器运行…

YOLOv1精读笔记

YOLO系列 摘要1. 将目标检测视为一个回归问题2. 定位准确率不如 SOTA,但背景错误率更低3. 泛化能力强 1.引言1.1 YOLO 速度很快1.2 全局推理 2. Unified Detection2.1 网络设计2.2 训练YOLOv1模型损失函数的选择和其潜在的问题YOLOv1模型如何改进其损失函数来更好地…

关于机器学习/深度学习的一些事-答知乎问(三)

可解释人工智能如何进行创新? (1)解释方法结合。现有的研究较少关注如何将不同的解释方法结合起来,未来可以考虑将不同的 解释方法结合在一起,如正反结合,事实解释侧重于 “为什么”,反事实解释…

回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测

回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测 目录 回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab基于RIME-SVR霜冰算法优化支持向量机的数…

边缘计算【智能+安全检测】系列教程--使用OpenCV+GStreamer实现真正的硬解码,完全消除马赛克

通过现有博客的GST_URL = "rtspsrc location=rtsp://admin:abcd1234@192.168.1.64:554/h264/ch01/main/av_stream latency=150 ! rtph264depay ! avdec_h264 ! videorate ! videoconvert ! appsink sync=false" GStreamer的解码方式解码,大多情况应该存在上图马赛克…

项目实现:Boost搜索引擎

一.项目背景 当前已经有许多上市公司做了搜索引擎,比如说百度,搜狗,360等等,这些项目都是很大的项目,有很高的技术门槛,我们自己实现一个完整的搜索引擎是不可能的,但是我们可以写一个简单的搜…