Salient Object Detection 探索经历

news2025/1/11 16:46:38

概述

显著性目标检测也被称为显著性检测,旨在通过模拟人类视觉感知系统来检测自然场景图像中最显著的目标和区域。虽然,显著性目标检测听名字是一个检测任务,但是实际上是一个图像分割任务,即一个像素级分类任务,是一个数据所驱动的一个任务。是将自然图像中的显著目标分割出来,显著目标也可以理解为前景。如下图中给出了显著目标检测的示意图。从下图中可以看出显著性目标检测是一个像素级别的二分类任务。在早期的显著目标检测中是基于手工特征的传统方法。目前,随着深度学习的快速发展,基于卷积神经网络的方法取得了显著成绩。随着Transformer的发展,很多使用Transformer架构的算法取得了更好的结果。
在这里插入图片描述
在这里插入图片描述

显著性目标检测目前存在的问题(不限这几个方面)

  • 多尺度目标问题
    在不同场景中,不同的物体往往以不同的尺度存在于图像中。在下图中展示了不同尺度的显著目标。这些示例说明了显著目标检测在处理不同尺度目标时的挑战,对显著目标检测算法在捕捉多尺度特征方面提出了高要求。
    在这里插入图片描述
  • 背景误判问题
    在显著目标检测场景中存在场景复杂的情况,尤其是当前景区域和背景区域具有相似的特征时,很容易将背景像素点误判为前景像素,从而影响整个模型的检测结果。如下图所示,青蛙自身的颜色和周围的环境十分相似、鸭子的倒影和鸭子本身也十分相似、以及小狗周围的白雪和小狗的毛发具有相似特征。在这些场景下,增加了显著目标检测的难度,这就需要模型可以很好的区分前景特征和背景特征。
    在这里插入图片描述
  • 边缘复杂问题
    显著目标具有复杂轮廓和结构时,模型难以精确检测显著目标的边缘像素。如图下所展示的场景中,人物具有不规则的边缘,亭子也具有很多小孔呈现出复杂结构以及房子也同样具有复杂的结构。这就要求显著目标检测网络能很好地感知显著目标的边缘特征。
    在这里插入图片描述
  • 预测完整性问题
    显著目标内部存在较大变化,内部结构复杂不一致的时候,会导致显著目标检测模型在预测时出现不完整的情况。如图下所示,图中所展示的显著目标,其内部都存在着不同程度的变化,这就要求网络具有一致性感知的能力,从而可以生成具有完整性的预测图。
    在这里插入图片描述
    我们在设计显著目标检测模型的时候,我们可以从以上几个角度来进行模型所提创新点的描述,比如使用了多尺度特征融合模块,可以多尺度特征融合模块是为了解决显著目标检测中存在的多尺度目标所提出来的。或者是在网络的最深层次中添加了注意力机制, 这个注意力机制可以让网络更加关注前景以解决显著目标检测中存在的背景误判问题。其他的也是类似,在做任何创新的时候一定要背靠解决什么问题提出的,虽然我们很多人都是先魔改的模型,在想动机,很多时候我们可以去观察一下加入模块后的预测图,去看看其在哪些方面是有所改进的,可以依据这样一个点来写。然后,在最后的可视化上再将图片展示出来,说明我们的所提模块确实是这样的。写论文的基础还是说先把实验做起来,以实验为基础来展开描述。

数据集和评价指标

  • 数据集
    显著目标检测的基准数据集有ECSSD、PASCAL-S、HKU-IS、DUTS、DUT-OMRON这五个数据集。其中DUTS分为DUTS-TE和DUTS-TR,DUTS-TR是训练集其他的都是测试集。
  • 评价指标
    评价指标包括平均绝对误差(MAE)、精确率-召回率(PR)曲线、F-measure、F-measure曲线、S-measure以及E-measure。其中F-measure还可以分为最大F-measure和平均F-measure。PR曲线是需要有的,F-measure曲线看结果好就用不好就不放。剩下的最大F-measure、平均F-measure、S-measure、以及E-measure中选2-3个即可,同时最大F-measure、平均F-measure中选一个、S-measure和E-measure中选一个。MAE指标是必须要有的。。

目前已有方法改进的方向

To be continued

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1591061.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

毅速ESU丨增材制造有助于传统制造企业打造新增长极

在科技浪潮的推动下,传统制造企业正面临着前所未有的挑战与机遇。产品的复杂程度不断提升,个性化需求层出不穷,越来越短的生产周期,不断升级的品质要求等,传统的生产模式在应对这些变化并不容易。而增材制造&#xff0…

[大模型]Yi-6B-Chat 接入 LangChain 搭建知识库助手

Yi-6B-Chat 接入 LangChain 搭建知识库助手 环境准备 在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8 接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端开始…

港科夜闻|叶玉如校长牵头举办大湾区国际科创峰会,与海内外教育领袖共话全球合作,教育与创新...

关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、香港科大校长叶玉如教授牵头举办大湾区国际科创峰会,与海内外教育领袖共话全球合作、教育与创新。粤港澳大湾区院士联盟主办的“第二届大湾区国际科创峰会”4月3日在香港科学园举行,汇聚了区内及海…

浅说深度优先搜索(上)——递归

好久没有讲算法了,今天我们就来谈谈“初学者”的第二个坑,深度优先搜索,其实也就是递归。 写在最前 相信很多人都和我一样刚开始的时候完全不知道怎么下手,甚至可以说是毫无头绪,那么我们来理一理递归到底要怎么写。…

C/C++ 入门(5)内存管理

个人主页:仍有未知等待探索-CSDN博客 专题分栏:C 欢迎指教! 目录 一、内存分布 二、C中动态内存管理 new delete 三、C语言的动态内存管理 四、operator new 和operator delete函数 operator new operator delete 五、new和delete的…

STM32H743VIT6使用STM32CubeMX通过I2S驱动WM8978(4)

接前一篇文章:STM32H743VIT6使用STM32CubeMX通过I2S驱动WM8978(3) 本文参考以下文章及视频: STM32CbueIDE Audio播放音频 WM8978 I2S_stm32 cube配置i2s录音和播放-CSDN博客 STM32第二十二课(I2S,HAL&am…

php反序列化(2)

一.pop链 在反序列化中,我们能控制的数据就是对象中的属性值(成员变量),所以在php反序列化中有一种漏洞利用方法叫“面向属性编程”,即pop(property oriented programming)。 pop链就是利用魔…

蓝桥杯基础18——第13届省赛真题与代码详解

目录 0.心得体会 1.题目如下 2.代码实现的思路 键值扫描 数码管窗口切换 数码管的动态扫描 继电器工作时L3闪烁,整点时刻L1灯光亮5秒 3.变量列表 定义的常量和数组 功能控制和状态变量 定时器和计数变量 4.代码参考 4.1 头文件 onewire.h ds1302.h 4…

vscode远程免密登录ssh

vscode远程免密登录ssh 1. 安装vscode2. 安装ssh3. 本地vscode配置免密登录远端开发机1. 本地配置秘钥2. 远程开发机配置秘钥 4. vscode常用小工具1. vscode怎么设置ctrl加滚轮放大字体 1. 安装vscode 2. 安装ssh 设置符号打开config配置文件,点击符号ssh连接新的远…

(UDP)其他信息: 通常每个套接字地址(协议/网络地址/端口)只允许使用一次。

“System.Net.Sockets.SocketException”类型的异常在 mscorlib.dll 中发生,但未在用户代码中进行处理其他信息: 通常每个套接字地址(协议/网络地址/端口)只允许使用一次。这个异常表示端口已经被占用了,需要释放端口或者使用其他端口来建立连接。您可以…

单片机方案 发声毛绒小黄鸭

随着科技的不断进步,智能早教已经成为了新时代儿童教育的趋势。智能早教玩具,一款集互动陪伴、启蒙教育、情感培养于一身的高科技产品。它不仅能陪伴孩子成长,还能在游戏中启迪智慧,是家长和孩子的理想选择。 酷得电子方案开发特…

程序员Java.vue,python前端后端爬虫开发资源分享

bat面试资料 bat面试题汇总 提取码:724z 更多资料

MYSQL5.7详细安装步骤

MYSQL5.7详细安装步骤: 0、更换yum源 1、打开 mirrors.aliyun.com,选择centos的系统,点击帮助 2、执行命令:yum install wget -y 3、改变某些文件的名称 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base…

python 今日小知识2—— globals() 函数

globals() 函数语法: globals() 参数 无 返回值 返回全局变量的字典。 globals()函数示例 下面是一个简单的示例,展示了globals()函数的用法: a 10 b 20def test_func():c 30for key,value in globals().items():print(key,value)t…

如何使用SQL注入工具?

前言 今天来讲讲SQL注入工具,sqlmap。如何使用它来一步步爆库。 sqlmap官方地址如下。 sqlmap: automatic SQL injection and database takeover tool 前期准备,需要先安装好docker、docker-compose。 一个运行的后端服务,用于写一个存在…

关于Unity使用DLL的说法

最近在研究一些构建依赖相关的,特别是Unity在不同平台上使用第三方类库时候的问题。简单查了一下资料,其实不难理解,这里只是简单的记录一下,弄明白一个简单的道理就行了。 为什么有的第三方库(DoTween),NewtonSoft等的dll库&…

HTML、CSS --javaweb学习笔记

记录一些重要的知识点 CSS引入方式 行内样式&#xff1a;<h1 style"...">内嵌样式&#xff1a;<style>…</style>外联样式&#xff1a;xxx.css <link href"..."> 颜色表示 关键字&#xff1a;red、green.......rgb表示法&…

C++矩阵库Armadillo出现warning solve() system is singular错误的解决

本文介绍使用C 语言的矩阵库Armadillo时&#xff0c;出现报错system is singular; attempting approx solution的解决方法。 在之前的文章中&#xff0c;我们介绍过Armadillo矩阵库在Visual Studio软件C环境中的配置方法&#xff08;https://blog.csdn.net/zhebushibiaoshifu/a…

回归预测 | Matlab实现SSA-GRNN麻雀算法优化广义回归神经网络多变量回归预测(含优化前后预测可视化)

回归预测 | Matlab实现SSA-GRNN麻雀算法优化广义回归神经网络多变量回归预测(含优化前后预测可视化) 目录 回归预测 | Matlab实现SSA-GRNN麻雀算法优化广义回归神经网络多变量回归预测(含优化前后预测可视化)预测效果基本介绍程序设计参考资料预测效果

计算机三级数据库技术备考笔记(十二)

第十二章 备份与恢复数据库 备份与恢复的概念 备份数据库就是将数据库中的数据以及保证数据库系统正常运行的有关信息保存起来&#xff0c;以备系统出现问题时恢复数据库时使用。 备份数据库 备份是制作数据库的副本,包括数据库结构、对象和数据。备份数据库的主要目的是为了防…