伪装目标检测论文阅读之:《Confidence-Aware Learning for Camouflaged Object Detection》

news2025/1/11 23:47:32

论文地址:link
code:link
摘要
  任意不确定性捕获了观测结果中的噪声。对于伪装目标检测,由于伪装前景和背景的外观相似,很难获得高精度的注释,特别是目标边界周围的注释。我们认为直接使用“嘈杂”的伪装图进行训练可能会导致模型泛化能力较差。在本文中,我们引入了一种明确的任意不确定性估计技术来表示由于噪声标签而导致的预测不确定性。具体来说,我们提出了一种具有置信度的伪装目标检测(COD)框架,使用动态监督来生成准确的伪装图和可靠的“任意不确定性”。与根据点估计管道产生确定性预测的现有技术不同,我们的框架将任意不确定性形式化为模型输出和输入图像上的概率分布。我们声称,一旦经过训练,我们的置信度估计网络就可以评估预测的像素精度,而无需依赖地面真实伪装图。广泛的结果说明了所提出的模型在解释伪装预测方面的优越性能。

1.模型结构图

在这里插入图片描述
在这里插入图片描述
上图是fusion融合模块,利用到了RCAB结构,关于RCAB我在之前的论文阅读中有发,是一个固定的残差通道注意力模块。
在这里插入图片描述

2.方法

模型一共分为两个模块,COD和OCE模块,OCE模块较为简单,是说在U-Net的基础上,融合高层和浅层特征,COD比较复杂,涉及到 f θ r e f f_\theta ^{ref} fθref f θ i n i f_\theta^{ini} fθini
C n U = D ( C o n v 3 ( C o n v 3 ( C n − 1 D ) ) ) C_n^U = D(Conv3(Conv3(C_{n - 1}^D))) CnU=D(Conv3(Conv3(Cn1D)))
C n U = D ( C o n v 3 ( C o n v 3 ( ∐ ( C n D , D ( T C o n v 2 ( C n + 1 U ) ) ) ) ) ) C_{\rm{n}}^U = D(Conv3(Conv3(\coprod (C_n^D,D(TConv2(C_{n + 1}^U)))))) CnU=D(Conv3(Conv3((CnD,D(TConv2(Cn+1U))))))
重要结构:
动态置信监督:
为置信度估计网络引入动态监督 ,定义如下:
y c = y × ( 1 − y ^ ) + ( 1 − y ) × y ^ {y_c} = y \times (1 - \hat y) + (1 - y) \times \hat y yc=y×(1y^)+(1y)×y^
置信估计网络:
l c = 0.5 × ( l c e ( c i n i , y i n i ) + l c e ( c r e f , y r e f ) ) {l_c} = 0.5 \times ({l_{ce}}({c^{ini}},{y^{ini}}) + {l_{ce}}({c^{ref}},{y^{ref}})) lc=0.5×(lce(cini,yini)+lce(cref,yref))
置信感知学习:
  伪装目标检测在整个图像中具有不同的学习难度,沿着对象边界的像素比远离伪装对象的背景像素更难区分,此外,迷彩前景包含不同程度迷彩的部分,其中一些部分很容易识别,例如,眼睛嘴巴等,还有一些很难区分的,例如主体区域和背景具有相似的背景外观,我们打算通过将估计的置信度图导入我们的伪装对象检测网络来对图像中这种不同的学习难度来进行建模,具体来说,受【47】的启发,建议使用置信感知结构损失来训练伪装目标检测网络,其在等式中定义:
l s = ∑ u , v w u , v l c e + ∑ u , v w u , v l d i c e {l_s} = \sum\limits_{u,v} {{w^{u,v}}{l_{ce}}} + \sum\limits_{u,v} {{w^{u,v}}{l_{dice}}} ls=u,vwu,vlce+u,vwu,vldice

3.结论

  我们引入了一种用于伪装物体检测的在线不确定性估计技术,任意不确定性建模的传统方法仅涉及对任务相关损失函数的监督,如方程式3所示,在本文中,我们处理在线任意不确定性估计,并对任意不确定性估计模块引入动态监督以突出错误性的区域,具体来说,我们的框架由相互依赖的伪装对象检测网络和在线置信度估计网络组成。生成动态网络置信度标签来训练OCENet,该标签源自CODNet和地面实况图的预测。OCENet估计的置信图指示CODNet更加重视预测不确定的学习区域。我们提出的网络在四个基准伪装物体检测测试数据集上的表现由于现有的伪装物体检测方法,此外,生成的置信图提供了一种有效地解决方案来解释模型预测,而无需依赖地面实况图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1590970.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分布式系统接口限流方案

Git地址:https://gitee.com/deepjava/test-api-limit.git 方案一、 Guava工具包 实现单机版限流 具体代码见git 方案二、Redis lua脚本 实现分布式系统的接口限流 具体代码见git

计算机视觉——引导APSF和梯度自适应卷积增强夜间雾霾图像的可见性算法与模型部署(C++/python)

摘要 在夜间雾霾场景中,可见性经常受到低光照、强烈光晕、光散射以及多色光源等多种因素的影响而降低。现有的夜间除雾方法常常难以处理光晕或低光照条件,导致视觉效果过暗或光晕效应无法被有效抑制。本文通过抑制光晕和增强低光区域来提升单张夜间雾霾…

Fiddle配置代理,保手机模拟器访问外部网络

前言: 嘿!大家好!我来带你们玩转Fiddler和Mumu模拟器的组合技了!此组合技能帮助你实现在模拟器上畅游外部网络。相信我,它会让你的开发和测试过程更加轻松愉快!废话不多说,赶紧展开我们的冒险吧…

家庭网络防御系统搭建-siem之security onion 安装配置过程详解

本文介绍一下security onion的安装流程,将使用该工具集中管理终端EDR和网络NDR sensor产生的日志。 充当SIEM的平台有很多,比如可以直接使用原生的elastic以及splunk等,security onion的优势在于该平台能够方便的集成网络侧(比如…

秋云uCharts 高性能跨平台图表库,支持H5、APP、小程序、Vue、Taro等更多支持canvas的框架平台

秋云uCharts 高性能跨平台图表库,支持H5、APP、小程序、Vue、Taro等更多支持canvas的框架平台 一、引言 随着移动互联网的快速发展,跨平台开发的需求日益增长。为了满足这一需求,许多开发者致力于开发能够在多个平台上运行的应用程序。然而&…

华为OD-C卷-攀登者1[100分]

攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。 地图表示为一维数组,数组的索引代表水平位置,数组的元素代表相对海拔高度。其中数组元素0代表地面。 例如: [0,1,2,4,3,1,0,0,1,2,3,1,2,1,0],代表如下图所示的地图 地图中有两个山脉位置分别为 1,2,3,4,5 和 8,9,1…

如何在前后端一体的项目中引入element-ui,即引入index.js、index.css等文件。

24年接手了一个18年的项目&#xff0c;想使用el-ui的组件库&#xff0c;得自己手动引入。 通过官网可以知道&#xff0c;首先得准备以下文件 <!-- 引入样式 --> <link rel"stylesheet" href"https://unpkg.com/element-ui/lib/theme-chalk/index.css…

【40分钟速成智能风控11】数据测试与应用

目录 ​编辑 数据测试与应用 联合建模机制 数据质量评估 覆盖率 稳定性 模型效果 投资回报率 线上应用 数据安全合规 数据测试与应用 智能风控模型的搭建离不开机构内外部的数据源&#xff0c;如何从海量数据源中挑选出最合适的部分进行特征工程和风控建模&#xff…

SpringAI初体验之HelloWorld

目录 前言1.准备工作2.初始化项目3.解决问题3.1 Connection Time out 连接超时问题3.2 You exceeded your current quota 额度超限问题 4.访问调用5.总结 前言 在逛SpringBoot页面时突然看到页面上新增了一个SpringAI项目,于是试了一下&#xff0c;感觉还行。其实就是封装了各家…

【Qt-Qt Creator使用技巧】

工具-Qt Creator ■ 使用技巧■ 定义触发片段■ Qt Creator 行编辑■ 代码注释■ 代码补全■ 快速给函数添加定义■ 创建书签■ 同步列输入■ 局部替换■ 源代码阅读■ 源码调试■ 使用技巧 ■ 定义触发片段 ■ Qt Creator 行编辑 shift + alt + up / down来获得多个游标。 …

idea导入maven项目出错

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

直接扩展到无限长,谷歌Infini-Transformer终结上下文长度之争

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 新建了免费的人工智能中文站https://ai.weoknow.com 新建了收费的人工智能中文站https://ai.hzytsoft.cn/ 更多资源欢迎关注 不知 Gemini 1.5 Pro 是否用到了这项技术。 谷歌又放大招了&#xff0c;发布下一代 Transfor…

Python+Selenium 自动化 - 浏览器调用与驱动配置

PythonSelenium 自动化 - 浏览器调用与驱动配置 一、浏览器版本查看与驱动下载二、selenium 库安装与调用三、常用命令解释 一、浏览器版本查看与驱动下载 通过关于可以看到浏览器的版本。 如果是新版浏览器&#xff0c;可以在这个地址下载&#xff1a;https://googlechromel…

怎么把多个音频剪辑合并到一起?快来试试实用音频的合并方法,一键就能无损拼接!

一&#xff0c;什么是音频合并 音频合并是一种将多个音频文件组合成一个单一文件的过程。这个过程在音频编辑、音乐制作、语音识别、电影制作等领域中非常常见。音频合并的目的是为了方便管理和播放&#xff0c;以及实现更复杂的音频处理需求。 二&#xff0c;音频合并的原理…

【蓝桥杯】蓝桥杯算法复习(五)

&#x1f600;大家好&#xff0c;我是白晨&#xff0c;一个不是很能熬夜&#x1f62b;&#xff0c;但是也想日更的人✈。如果喜欢这篇文章&#xff0c;点个赞&#x1f44d;&#xff0c;关注一下&#x1f440;白晨吧&#xff01;你的支持就是我最大的动力&#xff01;&#x1f4…

数据结构复习指导之绪论(数据结构的基本概念)

文章目录 绪论&#xff1a; 考纲内容 知识框架 复习提示 1.数据结构的基本概念 1.1基本概念和术语 1.数据 2.数据元素 3.数据对象 4.数据类型 5.数据结构 1.2数据结构三要素 1.数据的逻辑结构 2.数据的存储结构 3.数据的运算 绪论&#xff1a; 考纲内容 算法时…

jdk和Eclipse软件安装与配置(保姆级别教程)

目录 1、jdk的下载、安装、配置 1.1 jdk安装包的的下载地址&#xff1a;Java Archive | Oracle &#xff0c;点击进入&#xff0c;然后找到你想要的版本下载&#xff0c;如下图&#xff1a; 2.1 开始下载&#xff0c;如下图&#xff1a; 3.1 登入Oracle账号就可以立即下载了…

开发有哪些常见陷阱?

引言 在当今数字化时代&#xff0c;软件开发已成为推动科技进步和商业发展的重要引擎。然而&#xff0c;软件开发并非一帆风顺&#xff0c;其中蕴藏着许多陷阱和挑战。如何避免这些陷阱&#xff0c;提高软件开发的效率和质量&#xff0c;成为开发者们面临的重要问题 本文将深…

redis-缓存穿透与雪崩

一&#xff0c;缓存穿透&#xff08;查不到&#xff09; 在默认情况下&#xff0c;用户请求数据时&#xff0c;会先在缓存(Redis)中查找&#xff0c;若没找到即缓存未命中&#xff0c;再在数据库中进行查找&#xff0c;数量少可能问题不大&#xff0c;可是一旦大量的请求数据&a…

谷歌google浏览器无法更新Chrome至最新版本怎么办?浏览器Chrome无法更新至最新版本

打开谷歌google浏览器提示&#xff1a;无法更新Chrome&#xff0c;Chrome无法更新至最新版本&#xff0c;因此您未能获得最新的功能和安全修复程序。点击「重新安装Chrome」后无法访问此网站&#xff0c;造成谷歌浏览器每天提示却无法更新Chrome至最新版本。 谷歌google浏览器无…