1. NIO简介
在开始前,让我们再简单回顾一下NIO。
在传统的 Java I/O 模型(BIO)中,I/O 操作是以阻塞的方式进行的。也就是说,当一个线程执行一个 I/O 操作时,它会被阻塞直到操作完成。这种阻塞模型在处理多个并发连接时可能会导致性能瓶颈,因为需要为每个连接创建一个线程,而线程的创建和切换都是有开销的。
为了解决这个问题,在 Java1.4 版本引入了一种新的 I/O 模型 — NIO (New IO,也称为 Non-blocking IO) 。NIO 弥补了同步阻塞 I/O 的不足,它在标准 Java 代码中提供了非阻塞、面向缓冲、基于通道的 I/O,可以使用少量的线程来处理多个连接,大大提高了 I/O 效率和并发。
⚠️需要注意:使用 NIO 并不一定意味着高性能,它的性能优势主要体现在高并发和高延迟的网络环境下。当连接数较少、并发程度较低或者网络传输速度较快时,NIO 的性能并不一定优于传统的 BIO 。
2. NIO核心组件
NIO 主要包括以下三个核心组件:
- Buffer(缓冲区):NIO 读写数据都是通过缓冲区进行操作的。读操作的时候将 Channel 中的数据填充到 Buffer 中,而写操作时将 Buffer 中的数据写入到 Channel 中。
- Channel(通道):Channel 是一个双向的、可读可写的数据传输通道,NIO 通过 Channel 来实现数据的输入输出。通道是一个抽象的概念,它可以代表文件、套接字或者其他数据源之间的连接。
- Selector(选择器):允许一个线程处理多个 Channel,基于事件驱动的 I/O 多路复用模型。所有的 Channel 都可以注册到 Selector 上,由 Selector 来分配线程来处理事件。
三者的关系:
我们都知道,BIO是以流的方式来处理数据的,而NIO是以Buffer缓冲器和Channel通道配合来处理数据的。简单来说就是,不妨把buffer类比为火车,那么channel就是铁路,NIO就是通过channel通道运输着存储数据的buffer来实现数据处理。buffer和channel各司其职,channel不与数据打交道,只负责运输。
BIO中,流的单向的。但是对于NIO,基于channel的概念,我们的读写都是双向的。
下面我们一个一个来看NIO的组件。
3. 缓冲区Buffer
Buffer是缓冲器的抽象类:
Buffer的实现类中,我们用的最多的就是ByteBuffer了,它可以用来存储和操作字节数据。
作为一个缓冲区,最重要的功能就是写数据进去和从里面拿数据,也就是put方法和get方法。在具体看之前,我们先看一下Buffer类中定义的四个成员变量,具体含义见注释:
// 大小关系: 0 <= mark <= position <= limit <= capacity
// Buffer允许将位置直接定位到该标记处,这是一个可选属性
private int mark = -1;
// 下一个可以被读写的数据的位置(索引)。
// 从写操作模式到读操作模式切换的时候(flip),position归零,这样就可以从头读写
private int position = 0;
// Buffer 中可以读/写数据的边界。
// 写模式下,limit代表最多能写入的数据,一般等于capacity(可以通过limit(int newLimit)方法设置);
// 读模式下,limit 等于Buffer中实际写入的数据大小。
private int limit;
// Buffer可以存储的最大数据量,Buffer创建时设置且不可改变.
private int capacity;
Buffer 有读模式和写模式这两种模式,分别用于从Buffer中读取数据或者向Buffer中写入数据。Buffer被创建之后默认是写模式,调用flip()
可以切换到读模式。如果要再次切换回写模式,可以调用clear()
或者compact()
方法。
Buffer 对象不能通过 new 调用构造方法创建对象 ,只能通过静态方法实例化 Buffer。
这里以 ByteBuffer为例进行介绍:
// 分配堆内存
public static ByteBuffer allocate(int capacity);
// 分配直接内存
public static ByteBuffer allocateDirect(int capacity);
Buffer 最核心的两个方法:
get
: 读取缓冲区的数据put
:向缓冲区写入数据
除上述两个方法之外,其他的重要方法:
flip
:将缓冲区从写模式切换到读模式,它会将 limit 的值设置为当前 position 的值,将 position 的值设置为 0。clear
: 清空缓冲区,将缓冲区从读模式切换到写模式,并将 position 的值设置为 0,将 limit 的值设置为 capacity 的值。- …
来看个实战:
import java.nio.*;
public class CharBufferDemo {
public static void main(String[] args) {
// 分配一个容量为8的CharBuffer
CharBuffer buffer = CharBuffer.allocate(8);
System.out.println("初始状态:");
printState(buffer);
// 向buffer写入3个字符
buffer.put('a').put('b').put('c');
System.out.println("写入3个字符后的状态:");
printState(buffer);
// 调用flip()方法,准备读取buffer中的数据,将 position 置 0,limit 的置 3
buffer.flip();
System.out.println("调用flip()方法后的状态:");
printState(buffer);
// 读取字符
while (buffer.hasRemaining()) {
System.out.print(buffer.get());
}
// 调用clear()方法,清空缓冲区,将 position 的值置为 0,将 limit 的值置为 capacity 的值
buffer.clear();
System.out.println("调用clear()方法后的状态:");
printState(buffer);
}
// 打印buffer的capacity、limit、position、mark的位置
private static void printState(CharBuffer buffer) {
System.out.print("capacity: " + buffer.capacity());
System.out.print(", limit: " + buffer.limit());
System.out.print(", position: " + buffer.position());
System.out.print(", mark 开始读取的字符: " + buffer.mark());
System.out.println("\n");
}
}
---------------------------------------------------------------
output:
初始状态:
capacity: 8, limit: 8, position: 0
写入3个字符后的状态:
capacity: 8, limit: 8, position: 3
准备读取buffer中的数据!
调用flip()方法后的状态:
capacity: 8, limit: 3, position: 0
读取到的数据:abc
调用clear()方法后的状态:
capacity: 8, limit: 8, position: 0
画个图方便大家理解:
4. 通道Channel
Channel 通道只负责传输数据、不直接操作数据。操作数据都是通过 Buffer 缓冲区来进行操作!通常,通道可以分为两大类:文件通道和套接字通道。
- FileChannel:用于文件 I/O 的通道,支持文件的读、写和追加操作。FileChannel 允许在文件的任意位置进行数据传输,支持文件锁定以及内存映射文件等高级功能。FileChannel 无法设置为非阻塞模式,因此它只适用于阻塞式文件操作。
- SocketChannel:用于 TCP 套接字 I/O 的通道。SocketChannel 支持非阻塞模式,可以与 Selector(下文会讲)一起使用,实现高效的网络通信。SocketChannel 允许连接到远程主机,进行数据传输。
- ServerSocketChannel:用于监听 TCP 套接字连接的通道。与 SocketChannel 类似,ServerSocketChannel 也支持非阻塞模式,并可以与 Selector 一起使用。ServerSocketChannel 负责监听新的连接请求,接收到连接请求后,可以创建一个新的 SocketChannel 以处理数据传输。
- DatagramChannel:用于 UDP 套接字 I/O 的通道。DatagramChannel 支持非阻塞模式,可以发送和接收数据报包,适用于无连接的、不可靠的网络通信。
因为 Channel 是全双工的,所以它可以比流更好地映射底层操作系统的 API。特别是在 UNIX 网络编程模型中,底层操作系统的通道都是全双工的,同时支持读写操作。
Channel 最核心的两个方法:
- read :读取数据并写入到 Buffer 中。
- write :将 Buffer 中的数据写入到 Channel 中。
这里我们以 FileChannel 为例演示一下如何复制文件:
@Test
public void test007() throws IOException{
FileChannel readChannel = FileChannel.open(Paths.get("test.txt"),StandardOpenOption.READ);
FileChannel writeChannel = FileChannel.open(Paths.get("test_nio.txt"),StandardOpenOption.WRITE,
StandardOpenOption.CREATE);
ByteBuffer buffer = ByteBuffer.allocate(1024);
while(readChannel.read(buffer)!=-1){
buffer.flip();
writeChannel.write(buffer);
buffer.clear();
}
readChannel.close();
writeChannel.close();
}
5. 选择器Selector
Selector(选择器)是 NIO 中的一个关键组件,它允许一个线程处理多个 Channel。Selector 是基于事件驱动的 I/O 多路复用模型,主要运作原理是:通过 Selector 注册通道的事件,Selector 会不断地轮询注册在其上的 Channel。当事件发生时,比如:某个 Channel 上面有新的 TCP 连接接入、读和写事件,这个 Channel 就处于就绪状态,会被 Selector 轮询出来。Selector 会将相关的 Channel 加入到就绪集合中。通过 SelectionKey 可以获取就绪 Channel 的集合,然后对这些就绪的 Channel 进行相应的 I/O 操作。
一个多路复用器 Selector 可以同时轮询多个 Channel,由于 JDK 使用了epoll()
代替传统的 select 实现,所以它并没有最大连接句柄 1024/2048
的限制。这也就意味着只需要一个线程负责 Selector 的轮询,就可以接入成千上万的客户端。
Selector 可以监听以下四种事件类型:
SelectionKey.OP_ACCEPT
:表示通道接受连接的事件,这通常用于 ServerSocketChannelSelectionKey.OP_CONNECT
:表示通道完成连接的事件,这通常用于 SocketChannelSelectionKey.OP_READ
:表示通道准备好进行读取的事件,即有数据可读SelectionKey.OP_WRITE
:表示通道准备好进行写入的事件,即可以写入数据。
Selector
是抽象类,可以通过调用此类的open()
静态方法来创建Selector
实例。Selector
可以同时监控多个SelectableChannel
的 IO 状况,是非阻塞 IO 的核心。
一个Selector实例有三个SelectionKey
集合:
- 所有的
SelectionKey
集合:代表了注册在该Selector上的Channel,这个集合可以通过keys()
方法返回。 - 被选择的
SelectionKey
集合:代表了所有可通过select()
方法获取的、需要进行 IO 处理的 Channel,这个集合可以通过selectedKeys()
返回。 - 被取消的
SelectionKey
集合:代表了所有被取消注册关系的Channel,在下一次执行select()
方法时,这些 Channel 对应的 SelectionKey 会被彻底删除,程序通常无须直接访问该集合,也没有暴露访问的方法。
简单看一下如何遍历被选择的SelectionKey集合并进行处理:
Set<SelectionKey> selectedKeys = selector.selectedKeys();
Iterator<SelectionKey> keyIterator = selectedKeys.iterator();
while (keyIterator.hasNext()) {
SelectionKey key = keyIterator.next();
if (key != null) {
if (key.isAcceptable()) {
// ServerSocketChannel 接收了一个新连接
} else if (key.isConnectable()) {
// 表示一个新连接建立
} else if (key.isReadable()) {
// Channel 有准备好的数据,可以读取
} else if (key.isWritable()) {
// Channel 有空闲的 Buffer,可以写入数据
}
}
keyIterator.remove();
}
Selector 还提供了一系列和select()
相关的方法:
int select()
:监控所有注册的 Channel,当它们中间有需要处理的 IO 操作时,该方法返回,并将对应的 SelectionKey 加入被选择的 SelectionKey 集合中,该方法返回这些 Channel 的数量。int select(long timeout)
:可以设置超时时长的 select() 操作。int selectNow()
:执行一个立即返回的 select() 操作,相对于无参数的 select() 方法而言,该方法不会阻塞线程。Selector wakeup()
:使一个还未返回的 select() 方法立刻返回。- ……
来看一个使用Selector实现网络读写的简单demo:
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;
public class NioSelectorExample {
public static void main(String[] args) {
try {
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.configureBlocking(false);
serverSocketChannel.socket().bind(new InetSocketAddress(8080));
Selector selector = Selector.open();
// 将 ServerSocketChannel 注册到 Selector 并监听 OP_ACCEPT 事件
serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
while (true) {
int readyChannels = selector.select();
if (readyChannels == 0) {
continue;
}
Set<SelectionKey> selectedKeys = selector.selectedKeys();
Iterator<SelectionKey> keyIterator = selectedKeys.iterator();
while (keyIterator.hasNext()) {
SelectionKey key = keyIterator.next();
if (key.isAcceptable()) {
// 处理连接事件
ServerSocketChannel server = (ServerSocketChannel) key.channel();
SocketChannel client = server.accept();
client.configureBlocking(false);
// 将客户端通道注册到 Selector 并监听 OP_READ 事件
client.register(selector, SelectionKey.OP_READ);
} else if (key.isReadable()) {
// 处理读事件
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer buffer = ByteBuffer.allocate(1024);
int bytesRead = client.read(buffer);
if (bytesRead > 0) {
buffer.flip();
System.out.println("收到数据:" +new String(buffer.array(), 0, bytesRead));
// 将客户端通道注册到 Selector 并监听 OP_WRITE 事件
client.register(selector, SelectionKey.OP_WRITE);
} else if (bytesRead < 0) {
// 客户端断开连接
client.close();
}
} else if (key.isWritable()) {
// 处理写事件
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer buffer = ByteBuffer.wrap("Hello, Client!".getBytes());
client.write(buffer);
// 将客户端通道注册到 Selector 并监听 OP_READ 事件
client.register(selector, SelectionKey.OP_READ);
}
keyIterator.remove();
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
在示例中,我们创建了一个简单的服务器,监听 8080 端口,使用 Selector 处理连接、读取和写入事件。当接收到客户端的数据时,服务器将读取数据并将其打印到控制台,然后向客户端回复 “Hello, Client!”。
6. NIO零拷贝
零拷贝是提升 IO 操作性能的一个常用手段,像 ActiveMQ、Kafka 、RocketMQ等消息队列都用到了零拷贝。
零拷贝(Zero-Copy)是一种优化数据传输性能的技术,它最大限度地减少了在数据传输过程中的 CPU 和内存开销。在传统的数据传输过程中,数据通常需要在用户空间和内核空间之间进行多次拷贝,这会导致额外的 CPU 和内存开销。零拷贝技术通过避免这些多余的拷贝操作,实现了更高效的数据传输。
下图为零拷贝技术对比图:
CPU拷贝 | DMA拷贝 | 系统调用 | 上下文切换 | |
---|---|---|---|---|
传统方法 | 2 | 2 | read+write | 4 |
mmap+write | 1 | 2 | mmap+write | 4 |
sendfile | 1 | 2 | sendfile | 2 |
sendfile+DMA gather copy | 0 | 2 | sendfile | 2 |
可以看出,无论是传统的 I/O 方式,还是引入了零拷贝之后,2 次 DMA(Direct Memory Access) 拷贝是都少不了的。因为两次 DMA 都是依赖硬件完成的。零拷贝主要是减少了 CPU 拷贝及上下文的切换。
Java对零拷贝的支持:
MappedByteBuffer
是 NIO 基于内存映射(mmap)这种零拷贝方式的提供的⼀种实现,底层实际是调用了 Linux 内核的 mmap 系统调用。它可以将一个文件或者文件的一部分映射到内存中,形成一个虚拟内存文件,这样就可以直接操作内存中的数据,而不需要通过系统调用来读写文件。FileChannel
的transferTo()/transferFrom()
是 NIO 基于发送文件(sendfile)这种零拷贝方式的提供的一种实现,底层实际是调用了 Linux 内核的 sendfile系统调用。它可以直接将文件数据从磁盘发送到网络,而不需要经过用户空间的缓冲区。
7. 总结
这篇文章我们主要介绍了 NIO 的核心知识点,包括 NIO 的核心组件和零拷贝。如果我们需要使用 NIO 构建网络程序的话,不建议直接使用原生 NIO,编程复杂且功能性太弱,推荐使用一些成熟的基于 NIO 的网络编程框架比如 Netty。Netty 在 NIO 的基础上进行了一些优化和扩展比如支持多种协议、支持 SSL/TLS 等等。