Clarifying Question领域最常见的三个数据集

news2025/1/18 3:32:51

文章目录

  • Qulac
      • qulac.json:
      • qulac_hist012_dict.tar.gz:
  • MIMICS
  • ClariQ
    • ConvAI3 Data Challenge
      • Stage1: initial dataset
      • Stage2: human-in-the-loop
    • ClariQ Dataset
      • File Format
        • train.tsv and dev.tsv
        • test.tsv
        • question_bank.tsv
        • dev_synthetic.pkl.tar.gz & train_synthetic.pkl.tar.gz
        • single_turn_train_eval.pkl & multi_turn\_***_evla.pkl.tar.gz
        • top10k_docs_dict.pkl.tar.gz
        • train.qrel & dev.qrel

Qulac

aliannejadi/qulac: Qulac: A dataset on asking Questions for Lack of Clarity in open-domain information-seeking conversations. (github.com)
在这里插入图片描述

qulac.json:

qulac.json contains the topics, facets, questions, and answers. This is the main file of Qulac. However, it may not be very straightforward to use this file for experiments directly. That is why we have provided some auxiliary data files which we describe in this document. In the qulac.json file, you will find these fields:

  • topic_id: the ID of the topic in TREC Web Track.
  • facet_id: the ID of the facet in TREC Web Track.
  • topic_facet_id: an ID corresponding to a topic and facet pair in the following format: %d-%d. For example, 21-1 corresponds to the first facet (facet_id=1) of the 21st topic in TREC Web Track data.
  • topic_facet_question_id: an ID corresponding to a topic, facet, and question triplet in the following format: %d-%d-%d. For example, 21-1-5 corresponds to the fifth question of the first facet of the 21st topic. Each row of the data is identified by this ID.
  • topic: the TREC topic (query).
  • topic_type: an str value indicating the type of a topic. Possible values are faceted and ambiguous.
  • facet_type: an str value indicating the type of a facet. Possible values are inf (i.e., informational) and nav (i.e., navigational).
  • topic_desc: a full description of the topic as it appears in the TREC Web Track data.
  • facet_desc: a full description of the facet (information need) as it appears in the TREC Web Track data.
  • question: a clarifying question that the system can pose to the user for the current topic and facet.
  • answer: an answer to the clarifying question, assuming that the user is in the context of the current row (i.e., the user’s initial query is topic, their information need is facet, and question has been posed to the user).
topic_idfacet_idtopic_facet_idtopic_facet_question_idtopictopic_typefacet_typetopic_descfacet_descquestionanswer
1932193-2193-2-5dog clean up bagsfacetedinfCan I order dog clean-up bags online?Are there biodegradable products for the dispo…are you looking for a way to dispose your dog …im looking for dog waste bags that are biodegr…
1442144-2144-2-5trombone for saleambiguousinfinformation on where I could buy a new or used…good places to sell a used tromboneare you looking for a place to sell a used tro…yes
78378-378-3-7dietingambiguousinfFind “reasonable” dieting advice, that is no…Find crash diet plans that promise quick weigh…do you want to know if dieting is safei would like to know more on quick and safe di…

qulac_hist012_dict.tar.gz:

qulac_hist012_dict.tar.gz can be used for experiments involving multi-turn conversations. As we have mentioned in [1], the conversations are artificially generated following the data that is available in qulac.json. Hence, the structure of the dict is as follows (after decompression):

{ <record_id>: 
	{ 
	  'history_id': <the ID of conversation history (context)>,
	  'history_list': [
				{ 'question': <question1 string>,
				  'answer': <answer1 string> },
				{ 'question': <question2 string>,
				  'answer': <answer2 string> },
				{ 'question': <question2 string>,
				  'answer': <answer2 string> },		 					 
			    ],
	 'query': <query (topic) string>,
	 'question': <current question string>,
	 'answer': <current answer string>
  }
  ....
}
  • Record ID:

    topic_id - facet_id - past_question_id_1 - past_question_id_2 - current_question_id - answer_flag
    
    • The flag is used to indicate whether the record is referring to the results that are obtained with (=1) or without (=0) final answer
 '18-2-1-2-10-1': {	 
	'history_id': '18-2-1-2',
	'history_list': [{'answer': 'no i just want to find spreadsheets and templates',
			'question': 'are you interested in a service for wedding budgeting'},
			{'answer': 'yes i want to find some spreadsheets to help me budget',
			'question': 'are you looking for advice on wedding budgeting'}],
	'query': 'wedding budget calculator',
	'question': 'what is your projected budget for your wedding',
	'answer': 'i need to find a spreadsheet to figure it out'},

'25-1-3-8-1' : {	 
	'history_id': '25-1-3',
	'history_list': [{'answer': 'no i am looking for information on the greek mathematician euclid',
			'question': 'do you need directions to euclid ave'}],
	'query': 'euclid',
	'question': 'do you want to know related people',
	'answer': 'no i only want to know about one particular person'}

MIMICS

microsoft/MIMICS: MIMICS: A Large-Scale Data Collection for Search Clarification (github.com)
在这里插入图片描述

Each clarification in MIMICS consists of a clarifying question and up to five candidate answers

queryheadaches
questionWhat do you want to know about this medical condition?
candidate answers (options)symptom, treatment, causes, diagnosis, diet

MIMICS contains three datasets:

  • MIMICS-Click includes over 400k unique queries, their associated clarification panes, and the corresponding aggregated user interaction signals (i.e., clicks).

    [‘#HASH#value excel’, ‘What version of Excel are you looking for?’, ‘2010’, ‘2013’, ‘2016’, ‘’, ‘’, ‘medium’, ‘0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’]

    [‘%2f’, ‘What language are you looking for?’, ‘javascript’, ‘python’, ‘’, ‘’, ‘’, ‘medium’, ‘0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’]

    [‘.net’, ‘Select one to refine your search’, ‘powershell .net’, ‘iis .net’, ‘windows .net’, ‘sql .net’, ‘exchange .net’, ‘high’, ‘0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’]

    [‘.net 3.5 framework’, ‘Select one to refine your search’, ‘windows’, ‘powershell’, ‘xml’, ‘azure’, ‘json’, ‘high’, ‘3’, ‘0.8571428571428572’, ‘0.0’, ‘0.0’, ‘0.14285714285714285’, ‘0.0’]

  • MIMICS-ClickExplore is an exploration data that includes aggregated user interaction signals for over 60k unique queries, each with multiple clarification panes.

    Column(s)Description
    query(string) The query text.
    question(string) The clarifying question.
    option_1, …, option_5(string) Up to five candidate answers.
    impression_level(string) A three-level impression label (i.e., low, medium, or high).
    engagement_level(integer) A label in [0, 10] representing total user engagements.
    option_cctr_1, …, option_cctr_5(real) The conditional click probability on each candidate answer.

    [‘0 degrees’, ‘Select one to refine your search’, ‘celsius’, ‘kelvin’, ‘fahrenheit’, ‘’, ‘’, ‘medium’, ‘0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’]
    [‘0 degrees’, ‘Select one to refine your search’, ‘fahrenheit’, ‘celsius’, ‘kelvin’, ‘’, ‘’, ‘medium’, ‘4’, ‘1.0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’]
    [‘0 degrees’, ‘Select one to refine your search’, ‘boots for 0 degrees’, ‘gloves for 0 degrees’, ‘’, ‘’, ‘’, ‘medium’, ‘0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘0.0’]

  • MIMICS-Manual includes over 2k unique real search queries. Each query-clarification pair in this dataset has been manually labeled by at least three trained annotators. It contains graded quality labels for the clarifying question, the candidate answer set, and the landing result page for each candidate answer.

    Column(s)Description
    query(string) The query text.
    question(string) The clarifying question.
    option_1, …, option_5(string) Up to five candidate answers.
    question_label(integer) A three-level quality label for the clarifying question
    options_overall_label(integer) A three-level quality label for the candidate answer set
    option_label_1, …, option_label_5(integer) The conditional click probability on each candidate answer.

[‘multiple system atrophy’, ‘What do you want to know about this medical condition?’, ‘symptom’, ‘treatment’, ‘causes’, ‘diagnosis’, ‘diet’, ‘2’, ‘2’, ‘2’, ‘2’, ‘2’, ‘2’, ‘2’]

[‘team fortress 2’, ‘What would you like to know about this game?’, ‘team fortress 2 steam’, ‘team fortress 2 mods’, ‘team fortress 2 gameplay’, ‘team fortress 2 cheats’, ‘’, ‘1’, ‘2’, ‘2’, ‘2’, ‘2’, ‘2’, ‘’]

[‘google chrome exe’, ‘Select one to refine your search’, ‘64 bit’, ‘32 bit’, ‘’, ‘’, ‘’, ‘’, ‘2’, ‘2’, ‘2’, ‘’, ‘’, ‘’]
[‘google chrome exe’, ‘Select one to refine your search’, ‘32 bit’, ‘64 bit’, ‘’, ‘’, ‘’, ‘’, ‘2’, ‘2’, ‘2’, ‘’, ‘’, ‘’]

ClariQ

ConvAI3 Data Challenge

ClariQ is a part of this challenge.

The challenge ran in two stages:

  • stage1: participants were provided with a static dataset consisting mainly of an initial user request, clarifying question and user answer
  • stage2: human-in-the-loop

Stage1: initial dataset

The dataset consist of:

  • User Request: an initial user request in the conversational form with a label reflects if is needed ranged from 1 to 4
    • 1: don’t need any clarification
    • 4: need clarification (must)
  • Clarification question: a set of possible clarifying questions
  • User Answers: each questions is supplied with a user answer

Stage2: human-in-the-loop

Enables the top-performing teams of the first stage to evaluate their models with the help of human evaluators. We evaluate the performance of a system in two aspects:

  • how much the conversation can help a user find the information they are looking for
  • how natural and realistic does the conversation appear to a human evaluator

ClariQ Dataset

aliannejadi/ClariQ: ClariQ: SCAI Workshop data challenge on conversational search clarification. (github.com)

FeatureValue
# train (dev) topics187 (50)
# faceted topics141
# ambiguous topics57
# single topics39
# facets891
# total questions3,929
# single-turn conversations11,489
# multi-turn conversations~ 1 million
# documents~ 2 million

File Format

train.tsv and dev.tsv

They have the same format, contain topics, facets, questions, answers and clarification need labels.

  • topic_id: the ID of the topic (initial_request).
  • initial_request: the query (text) that initiates the conversation.
  • topic_desc: a full description of the topic as it appears in the TREC Web Track data.
  • clarification_need: a label from 1 to 4, indicating how much it is needed to clarify a topic.
  • facet_id: the ID of the facet.
  • facet_desc: a full description of the facet (information need) as it appears in the TREC Web Track data.
  • question_id: the ID of the question as it appears in question_bank.tsv.
  • question: a clarifying question that the system can pose to the user for the current topic and facet.
  • answer: an answer to the clarifying question, assuming that the user is in the context of the current row (i.e., the user’s initial query is initial_request, their information need is facet_desc, and question has been posed to the user).
topic_idinitial_requesttopic_descclarification_needfacet_idfacet_descquestion_idquestionanswer
14I’m interested in dinosaursI want to find information about and pictures of dinosaurs.4F0159Go to the Discovery Channel’s dinosaur site, which has pictures of dinosaurs and games.Q00173are you interested in coloring booksno i just want to find the discovery channels website
14I’m interested in dinosaursI want to find information about and pictures of dinosaurs.4F0159Go to the Discovery Channel’s dinosaur site, which has pictures of dinosaurs and games.Q03021which dinosaurs are you interested inim not asking for that i just want to go to the discovery channel dinosaur page

test.tsv

only contains the list of test topics, as well as their ID’s.

topic_idinitial_request
201I would like to know more about raspberry pi
202Give me information on uss carl vinson.

question_bank.tsv

Constitutes of all the questions in the collection. The TSV file has two columns: question_id, question(txet)

question_idquestion
Q00001
Q02318what kind of medium do you want this information to be in
Q02319what kind of penguin are you looking for
Q02320what kind of pictures are you looking for

Note: selecting Q00001 means selecting no question

dev_synthetic.pkl.tar.gz & train_synthetic.pkl.tar.gz

These files contain dicts of synthetically built multi-turn conversations (up to three turns).

{<record_id>: {'topic_id': <int>,
  'facet_id': <str>,
  'initial_request': <str>,
  'question': <str>,
  'answer': <str>,
  'conversation_context': [{'question': <str>,
   'answer': <str>},
  {'question': <str>,
   'answer': <str>}],
  'context_id': <int>},
  ...
  }

where

  • <record_id> is an int indicating the ID of the current conversation record.
    • While in the dev set there exists multiple <record_id> values per <context_id>, in the test file there would be only one.
  • 'topic_id', 'facet_id', and 'initial_request' indicate the topic, facet, and initial request of the current conversation, according to the single turn dataset.
  • 'question': current clarifying question that is being posed to the user.
  • 'answer': user’s answer to the clarifying question.
  • 'conversation_context' identifies the context of the current conversation. A context consists of previous turns in a conversation. As we see, it is a list of 'question' and 'answer' items. This list tells us which questions have been asked in the conversation so far, and what has been the answer to them.
  • 'context_id' is the ID of the conversation context. Basically, participants should predict the next utternace for each context_id.
  2288: {'topic_id': 8,
  'facet_id': 'F0969',
  'initial_request': 'I want to know about appraisals.',
  'question': 'are you looking for a type of appraiser',
  'answer': 'yes jewelry',
  'conversation_context': [],
  'context_id': 969},
  
 1570812: {'topic_id': 293,
 'facet_id': 'F0729',
 'initial_request': 'Tell me about the educational advantages of social networking sites.',
 'question': 'which social networking sites would you like information on',
 'answer': 'i don have a specific one in mind just overall educational benefits to social media sites',
 'conversation_context': [{'question': 'what level of schooling are you interested in gaining the advantages to social networking sites',
   'answer': 'all levels'},
  {'question': 'what type of educational advantages are you seeking from social networking',
   'answer': 'i just want to know if there are any'}],
 'context_id': 976573}

single_turn_train_eval.pkl & multi_turn_***_evla.pkl.tar.gz

These files are dicts of pre-computed document relevance results after asking each question

 { <evaluation_metric>: 
  	[ 
  	  <context_id>: 
  	  {
    	    <question_id> : 
  	  	 {
  	  	   'no_answer': <float>,
  	  	   'with_answer': <float>
  	  	 }
  	  	 , ... , 
  	  	 'MAX': 
  	  	  {
  	  	    'no_answer': <float>,
  	  	    'with_answer: <float>
  	  	  },
  	  	 'MIN':
  	  	  {
  	  	    'no_answer: <float>,
  	  	    'with_answer: <float>
  	  	  } 
  	  }
    ]
    ...
  }	
  • MAX and MIN: These refer to the maximum and minimum performance that the retrieval model achieves by asking the “best” and “worst” questions among the candidate questions.

top10k_docs_dict.pkl.tar.gz

A dict consisting of a list of document ID’s for a given topic_id, this dict is useful for having the list of top 10,000 documents as an initial ranking.

train.qrel & dev.qrel

These files contain the relevance assessments of ClueWeb09 and ClueWeb12 collections for every facet in the train and dev sets, respectively

<facet_id> 0 <document_id> <relevance_score>
F0001 0 clueweb09-en0038-74-08250 1
F0001 0 clueweb09-enwp01-17-11113 1
F0002 0 clueweb09-en0001-02-21241 1
F0002 0 clueweb09-en0006-52-11056 1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/158630.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【进阶】Spring核心思想及其项目创建

努力经营当下&#xff0c;直至未来明朗&#xff01; 文章目录一、Spring核心思想1. 容器2. IoC3. SpringIoC4. DI概念说明二、Spring的创建和使用1. 创建Spring项目3. Maven项目导入jar包和设置国内源的方法&#xff1a;2. Spring对象的存储/存储Bean对象3. 从Spring中读取到Be…

Electron自定义协议Protocol对web网站做数据交互,使用SSE实时数据推送到网站

(防盗镇楼)本文地址:https://blog.csdn.net/cbaili/article/details/128651549 前言 最近在撸VUE,想要实现一份代码既能构建Web又能构建Electron应用 并且能够判断环境是浏览器还是Electron,随后在Electron中做一些特定的事情 以往的Electron通信依靠IPC通信完成,但是发布到…

模板(template)包含与继承

Django 模板查找机制&#xff1a; Django 查找模板的过程是在每个 app 的 templates 文件夹中找&#xff08;而不只是当前 app 中的代码只在当前的 app 的 templates 文件夹中找&#xff09;。各个 app 的 templates 形成一个文件夹列表&#xff0c;Django 遍历这个列表&#x…

超详细的Socket通信原理和实例讲解

我们深谙信息交流的价值&#xff0c;那网络中进程之间如何通信&#xff0c;如我们每天打开浏览器浏览网页时&#xff0c;浏览器的进程怎么与web服务器通信的&#xff1f;当你用QQ聊天时&#xff0c;QQ进程怎么与服务器或你好友所在的QQ进程通信&#xff1f;这些都得靠socket&am…

【算法篇-排序】八大排序

十大排序0.常见排序1. 插入排序&#xff08;直接插入排序和希尔排序&#xff09;1.1直接插入排序1.2希尔排序&#xff08;缩小增量排序&#xff09;2.选择排序2.1选择排序2. 2堆排序3.交换排序3.1 冒泡排序3.2快速排序3.2.1hoare版本快排3.2.2挖坑法3.2.3前后指针法3.3.4 快排的…

【Linux】在Linux上写一个进度条小程序

&#x1f451;作者主页&#xff1a;安 度 因 &#x1f3e0;学习社区&#xff1a;安度因的学习社区 &#x1f4d6;专栏链接&#xff1a;Linux 文章目录一、前言二、理解 \r 与 \n三、行缓冲1、提出问题2、认识行缓冲3、解答与拓展4、倒计时四、进度条五、结语如果无聊的话&#…

2023/1/12总结

今天学习了图的割点与桥的算法 图的割点以及桥 图的割点&#xff1a;割点是指在无向连通图中&#xff0c;某点和该点连接的边去掉以后图便不再连通 在上面的图片中&#xff08;上面是一个有向图&#xff0c;我们当作无向图即可&#xff09;我们知道当我们去掉A点之后&#xf…

进阶必看 | 6个让Revit建模起飞的习惯,高效就靠它

大家好&#xff0c;这里是建模助手。 相信各位都知道&#xff0c;建模助手一向以来都追求更高&#xff0c;更快&#xff0c;更强。但是有些问题&#xff0c;不是插件本身能解决的事情&#xff0c;而是项目本身的问题。 一般来说&#xff0c;当Revit项目模型大于150MB时&#…

Linux安装sonarqube(含各种错误处理)

目录 1.下载安装 2.错误处理 2.1.JDK版本不适配 2.2.can not run elasticsearch as root 1.下载安装 下载地址&#xff1a; Download | SonarQube | Sonar &#xff08;下载页面向下拉&#xff09;选择稳定版本下载。 解压后启动脚本在&#xff1a; bin/{对应操作系统}…

【dp】买卖股票的最佳时机系列题目

文章目录121. 买卖股票的最佳时机122. 买卖股票的最佳时机 II309. 最佳买卖股票时机含冷冻期123. 买卖股票的最佳时机 III188. 买卖股票的最佳时机 IV121. 买卖股票的最佳时机 本题的重点是&#xff1a;只能在前面某一天买入&#xff0c;后面某一天卖出。要不就是不买入&#x…

外贸业务员怎样能提高自己的工作能力?

关于外贸业务员提高自己的工作能力&#xff0c;米贸搜整理如下&#xff0c;希望可以帮助到你&#xff1a;1.树立一个好的目标&#xff0c;并坚定不移地朝着这个目标努力。这个问题&#xff0c;无论你是新手还是有经验的外贸业务员&#xff0c;相信每个外贸业务员都或多或少的思…

K_A11_004 基于STM32等单片机采集热敏传感参数串口与OLED0.96双显示

K_A11_004 基于STM32等单片机采集热敏传感参数串口与OLED0.96双显示一、资源说明二、基本参数参数引脚说明三、驱动说明IIC地址/采集通道选择/时序对应程序:四、部分代码说明1、接线说明1.1、STC89C52RC热敏传感模块1.2、STM32F103C8T6热敏传感模块五、基础知识学习与相关资料下…

NCS8823替代方案|CS5260Typec转VGA可替代NCS8823|低BOM成本替代NCS8823设计

NCS8823替代方案|CS5260Typec转VGA可替代NCS8823|低BOM成本替代NCS8823设计 NCS8823是一款低功耗、DisplayPort信号至VGA转换器,通过USB Type-C连接器。它是 适用于USB Type-C至VGA转换器&#xff0c;适配器、对接设备。此设备结合了基于USB Type-C的 DisplayPort接收器和VGA…

华为私有云平台FusionCompute搭建

一、FusionCompute架构 架构CNA作为虚拟化操作系统&#xff0c;VRM作为虚拟化管理平台正常主机都安装CNA&#xff0c;单独建立VRM集群作为管理集群&#xff0c;我测试环境就一台主机&#xff0c;所以CNA和VRM装在同一台主机上&#xff0c;并且用这台主机分配虚拟机进行测试。 …

前端基础(十二)_函数高级、全局变量和局部变量、 预解析(变量提升)、函数返回值

作用域 作用域指&#xff1a;变量或函数的有效使用范围&#xff0c;有全局作用域与局部作用域两种。 全局变量和局部变量 全局变量&#xff1a;直接在 script 标签下声明的变量&#xff0c;任何地方都能访问&#xff0c;任何地方都能对其值进行改变。 局部变量&#xff1a;函…

CAN总线的个人理解

部分内容可以参考&#xff1a;https://blog.csdn.net/xwwwj/article/details/105372234? CAN概念简介 CAN是Controller Area Network 的缩写 CAN协议经过ISO标准化后有两个标准&#xff1a;ISO11898标准和ISO11519-2标准。其中ISO11898是针对通信速率为125Kbps~1Mbps的高速通…

适合制造业的ERP推荐?使用ERP系统的好处有哪些?

对于制造型企业来说&#xff0c;除了涉及到产品的生产制造和原料采购&#xff0c;还需要管理库存、销售、财务等方方面面。制造业的ERP系统的使用&#xff0c;尤为重要。一个好的制造业的ERP系统在企业管理中起到至关重要的作用&#xff0c;针对制造业的ERP系统提供贴合行业特性…

用cmd命令窗口运行第一个java程序同时分享idea写的代码用cmd编译运行【建议收藏】

在上一篇文章https://blog.csdn.net/qq_52545155/article/details/128651296?spm1001.2014.3001.5502教大家安装了jdk版本&#xff0c;那么我们来编写一个java程序&#xff0c;通过cmd命令运行起来看看效果叭&#xff01;&#xff01;&#xff01; 一、基本代码准备 1、打开记…

超全的SQL注入姿势总结

目录 常见姿势 环境搭建 信息收集 报错注入 延时注入 布尔注入 堆叠注入 绕过方法 绕过引号 or and xor not绕过 绕过注释符 内联注释绕过 类型转换绕过 绕过 WAF绕过-应用层 常见姿势 环境搭建 use mysql; create table if not exists my_table( id int PRIMA…

HC小区管理系统安装记录一次群里小伙伴梓豪方式安装问题

记录一次群里小伙伴安装&#xff0c;供大家参考 问题排查 打开梓豪地址查看 Redis MySQL Nginx 是否启动成功&#xff0c;查看日志启动成功 MySQL正常 redis 没有报错 Nginx也正常 查看hc 是否启动成功&#xff0c;点击控制台 查看docker 发现8008 端口被占用了&#xff0c…