为什么要纯C语言手搓GPT-2,Karpathy回应网友质疑

news2025/2/23 3:08:45

    ChatGPT狂飙160天,世界已经不是之前的样子。
新建了免费的人工智能中文站https://ai.weoknow.com
新建了收费的人工智能中文站https://ai.hzytsoft.cn/

更多资源欢迎关注


几天前,前特斯拉 Autopilot 负责人、OpenAI 科学家 Andrej Karpathy 发布了一个仅用 1000 行代码即可在 CPU/fp32 上实现 GPT-2 训练的项目「llm.c」。

图片

llm.c 旨在让大模型(LM)训练变得简单 —— 使用纯 C 语言 / CUDA,不需要 245MB 的 PyTorch 或 107MB 的 cPython。例如,训练 GPT-2(CPU、fp32)仅需要单个文件中的大约 1000 行干净代码(clean code),可以立即编译运行,并且完全可以媲美 PyTorch 参考实现。

图片

项目链接:https://github.com/karpathy/llm.c

项目的 Star 量不到七个小时就冲上了 2000,目前已经接近一万 Star。很多网友惊呼太强了:「即使顶着指针 ptsd,我也能感受到这些代码的美。」

图片

然而,llm.c 项目收到的不只是称赞,还有很多质疑的声音。例如,有网友直接提问:「能具体描述下这个项目做了什么吗,解决了什么问题?」

图片

对此,Karpathy 今天正面回应了网友们的疑问,详细阐述了 llm.c 项目的意义是什么,优缺点有哪些。

图片

机器之心对 Karpathy 叙述原文进行了不改变原意的编译、整理,我们来看下 Karpathy 是怎么说的:

训练大型语言模型 (LLM),例如 ChatGPT,涉及大量代码,复杂度很高。例如,典型的 LLM 训练可能会使用 PyTorch 深度学习库。PyTorch 本身就相当复杂,因为它实现了:

  • 一个非常通用的张量抽象(一种排列和操作数组的方法,这些数组用于存储神经网络参数和激活);

  • 一个非常通用的反向传播 Autograd 引擎(训练神经网络参数的算法) ;

  • 在神经网络中使用的大量深度学习层。 

PyTorch 项目有 11449 个文件中的 3327184 行代码。最重要的是,PyTorch 是用 Python 编写的,Python 本身就是一种非常高级的语言 —— 必须运行 Python 解释器将训练代码转换为低级计算机指令。例如,执行此转换的 cPython 项目包含 4306 个文件中的 2437955 行代码。

llm.c 项目旨在移除所有这些复杂性,并将 LLM 训练简化为其最基本的要素,用非常低级的语言 (C 语言) 直接与计算机对话,并且没有其他库依赖项,唯一的抽象是汇编代码本身。

令人惊讶的是,训练像 GPT-2 这样的 LLM 实际上只需要在单个文件中使用大约 1000 行 C 语言代码。我通过直接在 C 语言中实现 GPT-2 的神经网络训练算法来实现这种压缩。这实际上很困难,因为你必须详细了解训练算法,能够导出所有层反向传播(backpropagation)的 forward pass 和 backward pass,并非常仔细地实现所有数组索引计算,因为没有可用的 PyTorch 张量抽象。但一旦这样做了,并且通过再次检查 PyTorch 来验证正确性,你就会得到一些非常简单、小且精致的东西。

那么,为什么人们不一直这样做呢?

第一:这放弃了很大的灵活性。如果你想改动神经网络,在 PyTorch 中你可能只需要更改一行代码。而在 llm.c 中,改动很可能会涉及更多代码,可能会更加困难,并且需要更多专业知识。例如。如果涉及一个新的操作,你可能就需要做一些微积分,并写出它的 forward pass 和 backward pass 以进行反向传播,并确保其在数学上是正确的。

第二:放弃速度,至少一开始是这样的。天下没有免费的午餐 —— 不应该指望仅 1000 行代码就能达到最先进的速度。PyTorch 在后台做了很多工作,以确保神经网络非常高效。不仅所有张量操作都非常仔细地调用最高效的 CUDA 内核,而且还有 torch.compile 等等,以进一步分析和优化神经网络并有效地在计算机上运行。

现在,原则上,llm.c 应该能够调用所有相同的内核并直接运行。但这需要更多的工作,就像上述第一点一样,如果更改神经网络或正在运行的计算机的任何内容,你可能必须使用不同的参数调用不同的内核,并且可能会手动进行更多更改。

总的来说,llm.c 是训练 GPT-2 的直接实现。这个实现结果出人意料地简短。但 llm.c 不支持其他神经网络,仅支持 GPT-2,如果你想更改神经网络的任何内容,则需要专业知识。幸运的是,所有最先进的 LLM 实际上与 GPT-2 根本没有太大的区别。并且,llm.c 必须进行额外的调整和完善,但原则上我认为它应该几乎能够媲美,甚至超越 PyTorch,因为我们消除了所有开销。

最后,我为什么要做这个工作?因为这很有趣。它也很有教育意义,因为只需要那 1000 行非常简单的 C 语言代码。它只是一些数组和对其元素进行一些简单的数学运算,例如 + 和 *。对于正在进行的更多工作,它可能会变得实际有用。

    ChatGPT狂飙160天,世界已经不是之前的样子。
新建了免费的人工智能中文站https://ai.weoknow.com
新建了收费的人工智能中文站https://ai.hzytsoft.cn/

更多资源欢迎关注


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1586180.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RAGFlow:基于OCR和文档解析的下一代 RAG 引擎

一、引言 在人工智能的浪潮中,检索增强生成(Retrieval-Augmented Generation,简称RAG)技术以其独特的优势成为了研究和应用的热点。RAG技术通过结合大型语言模型(LLMs)的强大生成能力和高效的信息检索系统…

消息队列之-----------------zookeeper机制

目录 一、ZooKeeper是什么 二、ZooKeeper的工作机制 三、ZooKeeper特点 四、ZooKeeper数据结构 五、ZooKeeper应用场景 5.1统一命名服务 5.2统一配置管理 5.3统一集群管理 5.4服务器动态上下线 5.5软负载均衡 六、ZooKeeper的选举机制 6.1第一次启动选举机制 6.2非…

怎么区分开关电源的PFM与PWM模式?

原文来自微信公众号:工程师看海,与我联系:chunhou0820 看海原创视频教程:《运放秘籍》 大家好,我是工程师看海。 DCDC开关电源有两种常见的工作模式,就是我们常听说的PWM模式和PFM模式,一种是普…

算法训练营第二十三天(二叉树完结)

算法训练营第二十三天(二叉树完结) 669. 修剪二叉搜索树 力扣题目链接(opens new window) 题目 给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>L) 。你可能需要改…

2024年第十七届 认证杯 网络挑战赛 (A题)| 保暖纤维的保暖能力 |数学建模完整代码+建模过程全解全析

当大家面临着复杂的数学建模问题时,你是否曾经感到茫然无措?作为2022年美国大学生数学建模比赛的O奖得主,我为大家提供了一套优秀的解题思路,让你轻松应对各种难题。 让我们来看看认证杯 网络挑战赛 (A题)&#xff01…

两数相加(leetcode)

给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外,这两个数都不会以 0 …

基于Java的图书借阅网站, java+springboot+vue开发的图书借阅管理系统 - 毕业设计 - 课程设计

基于Java的图书借阅网站, javaspringbootvue开发的图书借阅管理系统 - 毕业设计 - 课程设计 文章目录 基于Java的图书借阅网站, javaspringbootvue开发的图书借阅管理系统 - 毕业设计 - 课程设计一、功能介绍二、代码结构三、部署运行1、后端运行步骤2、…

社会工程学——setoolkit的简单使用(克隆钓鱼网站)

Social Engineer Toolkit(SET)是一个开源的社会工程学攻击工具包,旨在模拟和执行多种社会工程学攻击,例如钓鱼、恶意软件传播和其他形式的社会工程学攻击。SET由David Kennedy(也被称为"ReL1K")开…

ubuntu20.04下搜狗输入法的安装

1、安装 fcitx 输入法的框架 sudo apt install fcitx-bin sudo apt-get install fcitx-table 2、Ubuntu下的默认浏览器火狐搜索 搜狗输入法 搜狗输入法linux-首页 (下载x86_64) 3、安装依赖 sudo apt install libqt5qml5 libqt5quick5 libqt5quickwidgets5 qml-modu…

取数游戏(dfs)

前言&#xff1a; 该题取自洛谷P1123&#xff0c;题主用的dfs&#xff08;深度优先搜索&#xff09; 题目描述&#xff1a; 数据范围&#xff1a; 思路&#xff1a; 思路见代码&#xff0c;注释的很清晰嗷 AC代码&#xff1a; #include <iostream> #include <alg…

【学习笔记】R语言入门与数据分析1

数据分析 数据分析的过程&#xff1a; 数据采集 数据存储 数据分析 数据挖掘 数据可视化 进行决策 数据挖掘 数据量大 复杂度高&#xff0c;容忍一定的误差限 追求相关性而非因果性 数据可视化 直观明了 R语言介绍 R是免费的&#xff08;开源软件、扩展性好&#xff09;…

PlanUML和Mermaid哪个好?

引言 在当今信息化快速发展的时代&#xff0c;数据可视化和图表工具不仅对于程序员&#xff0c;也对于非技术背景的人士至关重要。绘图工具可以帮助我们更好地理解和表达复杂的概念或数据流。PlantUML和Mermaid是两款被广泛使用的绘图语言&#xff0c;它们都能够通过简洁的文本…

4.11学习总结

一.IO流 一.java中IO的初步了解 (一).概念: Java中I/O操作主要是指使用Java进行输入&#xff0c;输出操作. Java所有的I/O机制都是基于数据流进行输入输出&#xff0c;这些数据流表示了字符或者字节数据的流动序列。Java的I/O流提供了读写数据的标准方法。任何Java中表示数据…

基于Python豆瓣电影数据可视化分析系统的设计与实现

大数据可视化项目——基于Python豆瓣电影数据可视化分析系统的设计与实现 2024年4月最新编写的新项目 项目介绍 本项目旨在通过对豆瓣电影数据进行综合分析与可视化展示&#xff0c;构建一个基于Python的大数据可视化系统。通过数据爬取收集、清洗、分析豆瓣电影数据&#xff…

【SpringBoot】SpringBoot项目快速搭建

本文将介绍Springboot项目的快速搭建 快速创建SpringBoot项目 打开IDEA在File->New->Project中新建项目 点击左侧的Spring Initializr 输入以下信息&#xff1a; Name 项目名称Group 根据公司域名来&#xff0c;或者默认com.example【倒序域名】Package Name 包名&am…

【java探索之旅】走进循环结构 深入解析while、for和do while的用法

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; Java编程秘籍 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一、循环结构1.1 while循环1.2 while代码示例1.3 break1.4 continue 二、for循环2.1 基…

蓝桥杯第十一届c++大学B组详解

目录 1.字符串排序 2.门牌制作 3.即约分数 4.蛇型填数 5.跑步锻炼 6.七段码 7.成绩统计 8.回文日期 9.字串分值和 10.平面切分 1.字符串排序 题目解析&#xff1a;这个题目真没搞懂。有会的大佬教我一下谢谢。 2.门牌制作 题目解析&#xff1a;出过超级多这类题目&am…

Java springboot+vue宠物爱心组织管理系统附赠万字文档

项目演示视频: &#xff08;有文档&#xff09;Java springboot宠物爱心组织管理系统 项目介绍: &#xff08;有文档&#xff09;Java springboot宠物爱心组织管理系统 技术&#xff1a; 基于springboot Vue 的宠物爱心组织管理系统&#xff08;宠物爱心组织管理系统&#xf…

12-pyspark的RDD算子注意事项总结

目录 相近算子异同总结相近变换算子异同foreach和foreachPartitionfold和reducecoalesce和repatition 相近动作算子异同cache和persist 算子注意事项需要注意的变换算子需要注意的动作算子 PySpark实战笔记系列第三篇 10-用PySpark建立第一个Spark RDD(PySpark实战笔记系列第…

【记录】Prompt模板|作为甲方怎么清晰专业地描述自己的需求(又名“乙方,给你的甲方扔个GPT解放自己吧”)

这篇Prompt摘抄并修改自朋友送给我的书的第49页5.2.3让ChatGPT构建提示&#xff0c;质量挺不错&#xff0c;支持一下她的博客&#xff1a;【好书推荐2】AI提示工程实战&#xff1a;从零开始利用提示工程学习应用大语言模型。 书长这样&#xff1a; 不啰嗦了&#xff0c;正文如…