在 Amazon Bedrock 上使用 Mistral Large 处理复杂的推理任务

news2025/1/7 22:01:00

2cfa76100daae919e43db3c1735d05e8.gif

上个月,我们宣布两款高性能的 Mistral AI 模型(即 Mistral 7B 和 Mixtral 8x7B)已在 Amazon Bedrock 上线。作为 Mistral 的首个基础模型,Mistral 7B 支持英语文本生成任务,并具备自然编码能力;Mixtral 8x7B 是一种受欢迎的优质稀疏专家混合(MoE)模型,非常适用于文本摘要、问题解答、文本分类、文本完善和代码补全。

现在,Mistral Large 已在 Amazon Bedrock 上线。Mistral Large 非常适合需要强大推理能力的复杂任务或高度专业化的任务,例如合成文本生成或代码生成。

以下是有关 Mistral Large 的一些信息:

  • 它精通英语、法语、西班牙语、德语和意大利语,对语法和文化背景有细致入微的理解。

  • 它有一个 32K 令牌上下文窗口,让您可以从大型文档中准确调用信息。

  • 它精确遵循指令,使您能够设计自己的审核策略。Mistral AI 的员工用它来设置测试版助手演示程序 le Chat 的系统级审核。您与大语言模型(LLM)的首次互动将会围绕提示(prompts)展开,因此,编写有效的提示是 LLM 生成期望响应的关键。关于向 Mistral AI 模型发出推理请求的更多细节,请参考此篇 Amazon Bedrock 指南:

    https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-mistral.html#model-parameters-mistral-request-response

Mistral Large 入门


要开始在 Amazon Bedrock 上使用 Mistral Large,您首先需要获得模型的访问权限。在 Amazon Bedrock 控制台上,选择模型访问权限,然后选择管理模型访问权限。接下来,选择 Mistral Large,然后选择保存更改

d1e897747cf0ee857984fda59bf78d59.png

获得 Mistral Large 的访问权限后,即可在 Amazon Bedrock 上使用该模型。刷新基础模型表以查看更新后的状态。

为了查看 Mistral Large 在复杂推理方面的实际运行情况,我在 Playgrounds 部分尝试了以下提示:

c5cf37590f6d2168a1093d7f2dd817d1.png

提示

Calculate the difference in payment dates between the two customers whose payment amounts are closest to each other in the given dataset:

'{
"transaction_id":{"0":"T1001","1":"T1002","2":"T1003","3":"T1004","4":"T1005"},
"customer_id":{"0":"C001","1":"C002","2":"C003","3":"C002","4":"C001"},
"payment_amount":{"0":125.5,"1":89.99,"2":120.0,"3":54.3,"4":210.2},
"payment_date":{"0":"2021-10-05","1":"2021-10-06","2":"2021-10-07","3":"2021-10-05","4":"2021-10-08"},
"payment_status":{"0":"Paid","1":"Unpaid","2":"Paid","3":"Paid","4":"Pending"}
}'

输出

To find the difference in payment dates between the two customers whose payment amounts are closest to each other, we first need to identify the two closest payment amounts and then find their respective payment dates.

The payment amounts are: 125.5, 89.99, 120.0, 54.3, 210.2

The two closest payment amounts are 125.5 and 120.0.The payment date for the payment amount 125.5 is '2021-10-05' and for the payment amount 120.0 is '2021-10-07'.

The difference in payment dates can be calculated as follows:

Date difference = |'2021-10-07' - '2021-10-05'| = 2 days

So, the difference in payment dates between the two customers whose payment amounts are closest to each other is 2 days.

在这篇文章的开头,我提到 Mistral Large 精通多种语言,对语法和文化背景有细致入微的理解。我测试了模型对法语的理解:

提示

Lequel est le plus lourd une livre de fer ou un kilogramme de plume

输出

Un kilogramme de plumes est plus lourd qu'une livre de fer.

Pour comprendre cela, il est important de se rappeler que :

1.Une livre (lb) est une unité de mesure de masse principalement utilisée aux États-Unis et dans d'autres systèmes de mesure impériaux, tandis qu'un kilogramme (kg) est l'unité de base de masse dans le système international d'unités (SI).

2. 1 kilogramme est approximativement égal à 2,2 livres.

Donc, un kilogramme de plumes est plus lourd qu'une livre de fer, car il correspond à environ 2,2 livres de plumes.

以编程方式

与 Mistral Large 交互


您还可以通过亚马逊云科技命令行界面(Amazon CLI)和软件开发工具包(Amazon SDK)使用 Amazon Bedrock API 进行各种调用。以下是使用 Amazon SDK 与 Amazon Bedrock 运行时系统 API 交互的 Python 示例代码。

如果您在提示中指定“You will only respond with a JSON object with the key X, Y, and Z.”,则可以在简单的下游任务中使用 JSON 格式的输出:

 Python 

import boto3
import json


bedrock = boto3.client(service_name="bedrock-runtime", region_name='us-east-1')


prompt = """
<s>[INST]You are a summarization system that can provide summaries with associated confidence 
scores.In clear and concise language, provide three short summaries of the following essay,
along with their confidence scores.You will only respond with a JSON object with the key Summary 
and Confidence.Do not provide explanations.[/INST]


# Essay: 
The generative artificial intelligence (AI) revolution is in full swing, and customers of all sizes and across industries are taking advantage of this transformative technology to reshape their businesses.From reimagining workflows to make them more intuitive and easier to enhancing decision-making processes through rapid information synthesis, generative AI promises to redefine how we interact with machines.It’s been amazing to see the number of companies launching innovative generative AI applications on AWS using Amazon Bedrock.Siemens is integrating Amazon Bedrock into its low-code development platform Mendix to allow thousands of companies across multiple industries to create and upgrade applications with the power of generative AI.Accenture and Anthropic are collaborating with AWS to help organizations—especially those in highly-regulated industries like healthcare, public sector, banking, and insurance—responsibly adopt and scale generative AI technology with Amazon Bedrock.collaboration will help organizations like the District of Columbia Department of Health speed innovation, improve customer service, and improve productivity, while keeping data private and secure.Amazon Pharmacy is using generative AI to fill prescriptions with speed and accuracy, making customer service faster and more helpful, and making sure that the right quantities of medications are stocked for customers.


To power so many diverse applications, we recognized the need for model diversity and choice for generative AI early on.We know that different models excel in different areas, each with unique strengths tailored to specific use cases, leading us to provide customers with access to multiple state-of-the-art large language models (LLMs) and foundation models (FMs) through a unified service: Amazon Bedrock.By facilitating access to top models from Amazon, Anthropic, AI21 Labs, Cohere, Meta, Mistral AI, and Stability AI, we empower customers to experiment, evaluate, and ultimately select the model that delivers optimal performance for their needs.


Announcing Mistral Large on Amazon Bedrock
Today, we are excited to announce the next step on this journey with an expanded collaboration with Mistral AI.A French startup, Mistral AI has quickly established itself as a pioneering force in the generative AI landscape, known for its focus on portability, transparency, and its cost-effective design requiring fewer computational resources to run.We recently announced the availability of Mistral 7B and Mixtral 8x7B models on Amazon Bedrock, with weights that customers can inspect and modify.Today, Mistral AI is bringing its latest and most capable model, Mistral Large, to Amazon Bedrock, and is committed to making future models accessible to AWS customers.Mistral AI will also use AWS AI-optimized AWS Trainium and AWS Inferentia to build and deploy its future foundation models on Amazon Bedrock, benefitting from the price, performance, scale, and security of AWS.Along with this announcement, starting today, customers can use Amazon Bedrock in the AWS Europe (Paris) Region.At launch, customers will have access to some of the latest models from Amazon, Anthropic, Cohere, and Mistral AI, expanding their options to support various use cases from text understanding to complex reasoning.


Mistral Large boasts exceptional language understanding and generation capabilities, which is ideal for complex tasks that require reasoning capabilities or ones that are highly specialized, such as synthetic text generation, code generation, Retrieval Augmented Generation (RAG), or agents.For example, customers can build AI agents capable of engaging in articulate conversations, generating nuanced content, and tackling complex reasoning tasks.The model’s strengths also extend to coding, with proficiency in code generation, review, and comments across mainstream coding languages.And Mistral Large’s exceptional multilingual performance, spanning French, German, Spanish, and Italian, in addition to English, presents a compelling opportunity for customers.By offering a model with robust multilingual support, AWS can better serve customers with diverse language needs, fostering global accessibility and inclusivity for generative AI solutions.


By integrating Mistral Large into Amazon Bedrock, we can offer customers an even broader range of top-performing LLMs to choose from.No single model is optimized for every use case, and to unlock the value of generative AI, customers need access to a variety of models to discover what works best based for their business needs.We are committed to continuously introducing the best models, providing customers with access to the latest and most innovative generative AI capabilities.


“We are excited to announce our collaboration with AWS to accelerate the adoption of our frontier AI technology with organizations around the world.Our mission is to make frontier AI ubiquitous, and to achieve this mission, we want to collaborate with the world’s leading cloud provider to distribute our top-tier models.We have a long and deep relationship with AWS and through strengthening this relationship today, we will be able to provide tailor-made AI to builders around the world.”


– Arthur Mensch, CEO at Mistral AI.


Customers appreciate choice
Since we first announced Amazon Bedrock, we have been innovating at a rapid clip—adding more powerful features like agents and guardrails.And we’ve said all along that more exciting innovations, including new models will keep coming.With more model choice, customers tell us they can achieve remarkable results:


“The ease of accessing different models from one API is one of the strengths of Bedrock.The model choices available have been exciting.As new models become available, our AI team is able to quickly and easily evaluate models to know if they fit our needs.The security and privacy that Bedrock provides makes it a great choice to use for our AI needs.”


– Jamie Caramanica, SVP, Engineering at CS Disco.


“Our top priority today is to help organizations use generative AI to support employees and enhance bots through a range of applications, such as stronger topic, sentiment, and tone detection from customer conversations, language translation, content creation and variation, knowledge optimization, answer highlighting, and auto summarization.To make it easier for them to tap into the potential of generative AI, we’re enabling our users with access to a variety of large language models, such as Genesys-developed models and multiple third-party foundational models through Amazon Bedrock, including Anthropic’s Claude, AI21 Labs’s Jurrassic-2, and Amazon Titan.Together with AWS, we’re offering customers exponential power to create differentiated experiences built around the needs of their business, while helping them prepare for the future.”


– Glenn Nethercutt, CTO at Genesys.


As the generative AI revolution continues to unfold, AWS is poised to shape its future, empowering customers across industries to drive innovation, streamline processes, and redefine how we interact with machines.Together with outstanding partners like Mistral AI, and with Amazon Bedrock as the foundation, our customers can build more innovative generative AI applications.


Democratizing access to LLMs and FMs
Amazon Bedrock is democratizing access to cutting-edge LLMs and FMs and AWS is the only cloud provider to offer the most popular and advanced FMs to customers.The collaboration with Mistral AI represents a significant milestone in this journey, further expanding Amazon Bedrock’s diverse model offerings and reinforcing our commitment to empowering customers with unparalleled choice through Amazon Bedrock.By recognizing that no single model can optimally serve every use case, AWS has paved the way for customers to unlock the full potential of generative AI.Through Amazon Bedrock, organizations can experiment with and take advantage of the unique strengths of multiple top-performing models, tailoring their solutions to specific needs, industry domains, and workloads.This unprecedented choice, combined with the robust security, privacy, and scalability of AWS, enables customers to harness the power of generative AI responsibly and with confidence, no matter their industry or regulatory constraints.
"""


body = json.dumps({
    "prompt": prompt,
    "max_tokens": 512,
    "top_p": 0.8,
    "temperature": 0.5,
})


modelId = "mistral.mistral-large-2402-v1:0"


accept = "application/json"
contentType = "application/json"


response = bedrock.invoke_model(
    body=body,
    modelId=modelId,
    accept=accept,
    contentType=contentType
)


print(json.loads(response.get('body').read()))

您可以获得 JSON 格式的输出,如下所示:

 JSON 

{ 
   "Summaries": [ 
      { 
         "Summary": "The author discusses their early experiences with programming and writing,
starting with writing short stories and programming on an IBM 1401 in 9th grade.
They then moved on to working with microcomputers, building their own from a Heathkit,
and eventually convincing their father to buy a TRS-80 in 1980.They wrote simple games,
a program to predict rocket flight trajectories, and a word processor.",
         "Confidence": 0.9 
      },
      { 
         "Summary": "The author began college as a philosophy major, but found it to be unfulfilling 
and switched to AI.They were inspired by a novel and a PBS documentary, as well as the 
potential for AI to create intelligent machines like those in the novel.Despite this 
excitement, they eventually realized that the traditional approach to AI was flawed and 
shifted their focus to Lisp.",
         "Confidence": 0.85 
      },
      { 
         "Summary": "The author briefly worked at Interleaf, where they found that their Lisp skills 
were highly valued.They eventually left Interleaf to return to RISD, but continued to work 
as a freelance Lisp hacker.While at RISD, they started painting still lives in their bedroom 
at night, which led to them applying to art schools and eventually attending the Accademia 
di Belli Arti in Florence.",
         "Confidence": 0.9 
      } 
   ] 
}

要了解更多 Mistral AI 模型中的提示功能,请访问 Mistral AI 文档:

https://docs.mistral.ai/guides/prompting-capabilities/

现已推出


Mistral Large 以及其他 Mistral AI 模型(Mistral 7B 和 Mixtral 8x7B)现已在美国东部(弗吉尼亚州北部)、美国西部(俄勒冈州)和欧洲地区(巴黎)区域的 Amazon Bedrock 上线;查看完整区域列表以了解未来的更新:

https://docs.aws.amazon.com/bedrock/latest/userguide/models-regions.html

您可以通过我们的生成式 AI 社区分享和学习:

https://community.aws/generative-ai

您也可以立即在 Amazon Bedrock 控制台中试用 Mistral Large,并将反馈发送至 Amazon re:Post for Amazon Bedrock 或通过常用的 Amazon Support 联系人发送。

了解我们与 Mistral AI 的合作:

https://aws.amazon.com/blogs/machine-learning/aws-and-mistral-ai-commit-to-democratizing-generative-ai-with-a-strengthened-collaboration/

点击阅读原文查看博客,

获得更详细内容!

本篇作者

93180f4551ee553ffa2a51cfc7def488.jpeg

Veliswa Boya

亚马逊云科技资深开发者布道师。她在技术领域担任过许多角色:从开发人员到分析师、架构师到云工程师。

3c9a56b871b201e0b6063f761e874ad1.gif

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

a710b3ca63271f00718567a1506b6771.gif

听说,点完下面4个按钮

就不会碰到bug了!

4d5ffeacf14ea5f78d4adfe67fbd7b20.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1579085.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

oj赛(双周赛第二十四次)

目录 1. 八大藤校2025fall标化要求已全部出炉 2. 上海“2024人才储备”计划启动&#xff01; 伐木工小码哥 杰瑞吃奶酪 小码哥处理订单 黑手党 第k小的距离 养竹鼠 甜品配置 礼物 合数分解 均分糖果 持盾 咖啡品鉴师小码哥 1. 八大藤校2025fall标化要求已全部…

安全威胁情报的漏洞挖掘

前段时间edu上出现了两个网安总队收取安全情报&#xff0c;不收漏洞&#xff0c;下面简单分析一下如何挖掘安全情报。 在发现在edu中新增了两个网安总队收安全情报等漏洞&#xff0c;那威胁情报又会包含哪些内容呢&#xff1f;以前或许会看到各种ss网站、bc网站、yx网站满天飞&…

小程序开发SSL证书下载和安装

在开发小程序时&#xff0c;确保数据的安全传输至关重要&#xff0c;而实现这一目标的关键在于正确获取与安装SSL证书。以下详细介绍了从获取到安装SSL证书的完整流程&#xff0c;以助您为小程序构建可靠的加密通信环境。 一、小程序SSL证书类型选择&#xff1a; 域名验证型D…

简单的跳马问题,遍历dp[j][i]到某个值那个数据不对了,如何解决??

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

K8s技术全景:架构、应用与优化

一、介绍 Kubernetes的历史和演进 Kubernetes&#xff08;简称K8s&#xff09;是一个开源的容器编排系统&#xff0c;用于自动化应用程序的部署、扩展和管理。它最初是由Google内部的Borg系统启发并设计的&#xff0c;于2014年作为开源项目首次亮相。 初始阶段 Kubernetes的诞生…

测开面经分享:计算机网络part2

什么是 HTTP 和 HTTPS&#xff1f;它们之间有什么区别&#xff1f; a. HTTP&#xff08;超文本传输协议&#xff09;和HTTPS&#xff08;安全超文本传输协议&#xff09;是用于在Web上传输数据的协议。它们之间的区别在于安全性和数据传输方式。 b. HTTP是一种不安全的协议&…

聚道云连接器打通红圈CRM和金蝶云星辰,赋能环境科技公司数字化转型

一、客户介绍 某环境科技有限公司是一家专注于环保科技领域的领先企业&#xff0c;致力于为客户提供全方位的环境解决方案。公司拥有一支经验丰富、技术精湛的团队&#xff0c;不断推动环保技术的创新与应用。作为业内的佼佼者&#xff0c;该公司在环境治理、资源回收和节能减…

利用Java代码调用Lua脚本改造分布式锁

4.8 利用Java代码调用Lua脚本改造分布式锁 lua脚本本身并不需要大家花费太多时间去研究&#xff0c;只需要知道如何调用&#xff0c;大致是什么意思即可&#xff0c;所以在笔记中并不会详细的去解释这些lua表达式的含义。 我们的RedisTemplate中&#xff0c;可以利用execute方…

【D3.js Tidy tree绘制树形图,单棵树,左右树,平移,拖拽,树形中的天花板实现,源码实现】

这里写自定义目录标题 D3.js Tidy tree绘制树形图,单棵树,左右树,平移,拖拽,树形中的天花板实现,源码实现D3 简介D3 官网有很多例子,这里说的是Tidy tree[树形图表svg][左侧关系->中间对象<-右侧关系 ] 树形实现 D3.js Tidy tree绘制树形图,单棵树,左右树,平移,拖拽,树形…

C语言易错知识点(3):字符数组的修改、sscanf、sprintf

字符数组是一个很细节的语法&#xff0c;涉及很多知识点&#xff0c;这篇文章我主要分享一下如何理解字符数组&#xff0c;以及对应的sscanf、sprintf有什么用 1.字符数组的初始化以及内容修改易错点 字符数组的初始化方式有两种&#xff0c;一种是直接用字符串进行初始化&am…

【SCI绘图】【热力图系列1 R】多特征相关性分析热力图R语言实现

SCI&#xff0c;CCF&#xff0c;EI及核心期刊绘图宝典&#xff0c;爆款持续更新&#xff0c;助力科研&#xff01; 本期分享&#xff1a; 【SCI绘图】【热力图系列1 R】多特征相关性分析热力图R语言实现 1.环境准备 library(gplots) library(RColorBrewer) 2.数据示例 ###…

Qt快速入门到熟练(3.程序运行发布与设置图标)

程序运行发布 当我们执行过qt过后&#xff0c;将会在项目目录里面生成出一个debug构建目录&#xff0c;点击进去选择debug文件夹&#xff0c;就可以看到我们生成出来的可执行文件。 很显然我们的项目就叫做MyFirstWidget&#xff0c;所以生成的可执行文件在没有人为设置的情…

深入理解JVM垃圾收集器

相关系列 深入理解JVM垃圾收集算法-CSDN博客 目前市面常见的垃圾收集器有Serial、ParNew、Parallel、CMS、Serial Old、Parallel Old、G1、ZGC以及有二种不常见的Epsilon、Shenandoah的&#xff0c;从上图可以看到有连线的的垃圾收集器是可以组合使用&#xff0c;是年轻代老年代…

LeetCode初级算法书Java题解日常更新

LeetCode初级算法高效题解&#xff08;含思路注释&#xff09; 文章目录 LeetCode初级算法高效题解&#xff08;含思路注释&#xff09;前言一、数组1.删除排序数组中的重复项2.买卖股票的最佳时机 II3.旋转数组4.存在重复元素 总结 前言 决定用四个月过一下算法 一、数组 1.…

全国月均太阳辐射空间分布数据/月度降雨量分布/月均气温分布

引言 我国幅员辽阔&#xff0c;地形复杂&#xff0c;位于亚欧大陆东部&#xff0c;太平洋西岸。气候特征为&#xff1a;季风气候明显&#xff0c;大陆性气候强&#xff0c;气候类型复杂多样&#xff0c;水热同期。我国太阳辐射西部多于东部&#xff0c;北部多于南部&#xff0c…

【算法基础】插入排序与二分查找、升级二分查找

文章目录 1. 插入排序1.1 插入排序的思想1.2 插入排序的实现 2. 普通二分查找2.1 普通二分查找的思想2.2 普通二分查找的实现 3. 升级二分查找3.1 升级二分查找思想3.2 升级二分查找实现 1. 插入排序 1.1 插入排序的思想 插入排序很类似于已有一副有序的扑克牌&#xff0c;不断…

【企业场景】设计模式重点解析

设计模式 在平时的开发中&#xff0c;涉及到设计模式的有两块内容&#xff1a; 我们平时使用的框架&#xff08;比如spring、mybatis等&#xff09;我们自己开发业务使用的设计模式。 在平时的业务开发中&#xff0c;其实真正使用设计模式的场景并不多&#xff0c;虽然设计号…

Excel全套213集教程

Excel全套213集教程 包含技术入门93集 图表17集 数据透视35集 公式函数68 基础入门 93节 https://www.alipan.com/s/cMxuPstkS1x 提取码: 77dd 点击链接保存&#xff0c;或者复制本段内容&#xff0c;打开「阿里云盘」APP &#xff0c;无需下载极速在线查看&#xff0c;视…

Springboot使用教程

二、配置文件 SpringBoot使用一个全局的配置文件&#xff0c;配置文件名是固定的&#xff1b; •application.properties •application.yml 1.配置文件的作用&#xff1a; 修改SpringBoot自动配置的默认值&#xff1b;SpringBoot在底层都给我们自动配置好&#xff1b; Y…

【DM8】列表分区List

范围分区是按照某个列上的数据范围进行分区的&#xff0c;如果某个列上的数据无法通过划分范围的方法进行分区&#xff0c;并且该列上的数据是相对固的一些值&#xff0c;可以考虑使用 LIST 分区。一般来说&#xff0c;对于数字型或者日期型的数据&#xff0c;适合采用范围分区…