基于opencv的猫脸识别模型

news2024/11/28 18:36:08

opencv介绍

OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。

读取图片

opoencv提供相应的函数方便我们读取相关图片,打开并展示他

#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#显示图片
cv.imshow('read_img',img)
#等待
cv.waitKey(0)
#释放内存
cv.destroyAllWindows()

灰度转换

首先我们介绍一下灰度图像,看看他的定义:

在电子计算机领域中,灰度(Gray scale)数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以是任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑白两种颜色,灰度图像在黑色与白色之间还有许多级的颜色深度。

通俗的讲灰度图像就是把每个像素只有一个颜色的图像,一般来讲都是黑白;那么我们为什么需要将普通图像转化为灰度图像呢?

因为彩色图像中的每个像素颜色由R、G、B三个分量来决定,而每个分量的取值范围都在0-255之间,这样对计算机来说,彩色图像的一个像素点就会有256256256=16777216种颜色的变化范围;而灰度图像是R、G、B分量相同的一种特殊彩色图像,对计算机来说,一个像素点的变化范围只有0-255这256种。彩色图片的信息含量过大,而进行图片识别时,其实只需要使用灰度图像里的信息就足够了,所以图像灰度化的目的就是为了提高运算速度。
当然,有时图片进行了灰度处理后还是很大,也有可能会采用二值化图像(即像素值只能为0或1)。

我们可以通过调用opencv的函数库来实现灰度的转化

#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#灰度转换
gray_img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
#显示灰度图片
cv.imshow('gray',gray_img)
#保存灰度图片
cv.imwrite('gray_face1.jpg',gray_img)
#显示图片
cv.imshow('read_img',img)
#等待
cv.waitKey(0)
#释放内存
cv.destroyAllWindows()

修改尺寸

除了灰度转化的函数,opencv还为我们提供了图像修改相关的函数,这里简单介绍下

#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#修改尺寸
resize_img = cv.resize(img,dsize=(200,200))
#显示原图
cv.imshow('img',img)
#显示修改后的
cv.imshow('resize_img',resize_img)
#打印原图尺寸大小
print('未修改:',img.shape)
#打印修改后的大小
print('修改后:',resize_img.shape)
#等待
while True:
    if ord('q') == cv.waitKey(0):
        break
#释放内存
cv.destroyAllWindows()

绘制矩形

在识别到我们想识别的物体后,需要用矩形将他绘制出来,我们这里提供一下相关的函数接口

#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#坐标
x,y,w,h = 100,100,100,100
#绘制矩形
cv.rectangle(img,(x,y,x+w,y+h),color=(0,0,255),thickness=1)
#绘制圆形
cv.circle(img,center=(x+w,y+h),radius=100,color=(255,0,0),thickness=5)
#显示
cv.imshow('re_img',img)
while True:
    if ord('q') == cv.waitKey(0):
        break
#释放内存
cv.destroyAllWindows()

猫脸检测

我们这里用到opencv自带的文件来构建我们的检测模型,从而从图像上迅速识别到猫脸,以下代码是用的人脸识别的文件,如果要做测试可以把 haarcascade_frontalface_alt2.xml 换成猫脸相关的xml文件

#导入cv模块
import cv2 as cv
#检测函数
def face_detect_demo():
    gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
    face_detect = cv.CascadeClassifier(r'C:\Users\33718\Desktop\face\opencv\data\haarcascades\haarcascade_frontalface_alt2.xml')
    face = face_detect.detectMultiScale(gary,1.01,5,0,(100,100),(300,300))
    for x,y,w,h in face:
        cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
    cv.imshow('result',img)

#读取图像
img = cv.imread(r'C:\Users\33718\Desktop\face\opencv\data\jm\1.lena.jpg')
#检测函数
face_detect_demo()
#等待
while True:
    if ord('q') == cv.waitKey(0):
        break
#释放内存
cv.destroyAllWindows()

训练数据

我们事先准备数据,并且按照如下格式命名:
在这里插入图片描述
然后我们运行以下代码,就能获得一个训练好的yml文件

import os
import cv2
import sys
from PIL import Image
import numpy as np

def getImageAndLabels(path):
    facesSamples=[]
    ids=[]
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    #检测猫脸
    face_detector =  cv2.CascadeClassifier('C:/Users/33718/Desktop/face/catface/data/haarcascades/haarcascade_frontalcatface_extended.xml')
    #打印数组imagePaths
    print('数据排列:',imagePaths)
    #遍历列表中的图片
    for imagePath in imagePaths:
        #打开图片,黑白化
        PIL_img=Image.open(imagePath).convert('L')
        #将图像转换为数组,以黑白深浅
       # PIL_img = cv2.resize(PIL_img, dsize=(400, 400))
        img_numpy=np.array(PIL_img,'uint8')
        #获取图片人脸特征
        faces = face_detector.detectMultiScale(img_numpy)
        #获取每张图片的id和姓名
        id = int(os.path.split(imagePath)[1].split('.')[0])
        #预防无面容照片
        for x,y,w,h in faces:
            ids.append(id)
            facesSamples.append(img_numpy[y:y+h,x:x+w])
        #打印脸部特征和id
        #print('fs:', facesSamples)
        print('id:', id)
        # print('fs:', facesSamples[id])
    print('fs:', facesSamples)
    #print('脸部例子:',facesSamples[0])
    #print('身份信息:',ids[0])
    return facesSamples,ids

if __name__ == '__main__':
    #图片路径
    path='./data/photos/'
    #获取图像数组和id标签数组和姓名
    faces,ids=getImageAndLabels(path)
    #获取训练对象
    recognizer=cv2.face.LBPHFaceRecognizer_create()
    #recognizer.train(faces,names)#np.array(ids)
    recognizer.train(faces,np.array(ids))
    #保存文件
    recognizer.write('trainer/trainerCat.yml')
    #save_to_file('names.txt',names)

猫脸检测

最后我们就可以检测猫猫的图像了,以下是效果图:
在这里插入图片描述

import cv2
import numpy as np
import os
# coding=utf-8
import urllib
import urllib.request
import hashlib

#加载训练数据集文件
recogizer=cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainerCat.yml')
names=[]
warningtime = 0

from PIL import Image, ImageDraw, ImageFont
def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):
    if (isinstance(img, np.ndarray)):  # 判断是否OpenCV图片类型
        img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
    # 创建一个可以在给定图像上绘图的对象
    draw = ImageDraw.Draw(img)
    # 字体的格式
    fontStyle = ImageFont.truetype(
        "STSONG.TTF", textSize, encoding="utf-8")
    # 绘制文本
    draw.text((left, top), text, textColor, font=fontStyle)
    # 转换回OpenCV格式
    return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

#准备识别的图片
def face_detect_demo(img):
    gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度
    # 这里要写绝对路径
    face_detector=cv2.CascadeClassifier('C:/Users/33718/Desktop/face/catface/data/haarcascades/haarcascade_frontalcatface_extended.xml')
    # face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300))
    face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,)
    #face=face_detector.detectMultiScale(gray)
    for x,y,w,h in face:
        cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)
        cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1)
        # 人脸识别
        ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])
        #print('标签id:',ids,'置信评分:', confidence)
        if confidence < 60:
            global warningtime
            warningtime += 1
            if warningtime > 100:
               # warning()
               warningtime = 0
            cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
        else:
            img = cv2ImgAddText(img, str(names[ids-1]), x + 10, y - 10, (255, 0, 0), 30)
            # cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)
    cv2.imshow('result',img)
    #print('bug:',ids)

def name():
    path = './data/photos/'
    #names = []
    imagePaths=[os.path.join(path,f) for f in os.listdir(path)]
    for imagePath in imagePaths:
       name = str(os.path.split(imagePath)[1].split('.',2)[1])
       names.append(name)


name()

# 摄像头检测
# cap=cv2.VideoCapture(0)
# cap = cv2.VideoCapture('1.mp4')
# while True:
#     flag,frame=cap.read()
#     if not flag:
#         break
#     face_detect_demo(frame)
#     if ord(' ') == cv2.waitKey(10):
#         break


frame = cv2.imread('1.jpg')
while True:
    # 调用人脸检测函数
    face_detect_demo(frame)

    # 等待按键或者一段时间后继续下一次循环
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

源码链接

GitHub

Gitee

🌈🌈🌈
如果对各位看官有帮助,还请看官们点个关注,阿里嘎多~
🌙🌙🌙
代码的路径要换成你自己的绝对路径,opencv的函数只能识别绝对路径,起码我的版本是这样。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1577670.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用美化方法设计项目主窗体(二)

使用美化方法设计项目主窗体 分析效果图的实现 效果图&#xff1a; 新建 Windows 窗体 新窗体命名&#xff1a;FrmMain.cs修改窗体的位置&#xff1a;StartPosition&#xff1a;CenterScreen窗体的无边框设计&#xff1a;FormBorderStyle&#xff1a;none修改窗体的大小&a…

JDK下载及安装说明

1&#xff0e;JDK下载 访问oracle官网&#xff1a;http://www.oracle.com 在首页点击Downloads&#xff0c;进入oracle软件下载页。 在下载页面&#xff0c;点击Java。 选择Java (JDK) for Developers&#xff0c;点击。 在 Java SE Downloads 页面&#xff0c;点击中间的DO…

如何挂载img镜像以及lvm分区

上一章节&#xff0c;我在win10下利用qemu安装了一个aarch64的 kylin-server-v10的ISO系统镜像包。安装时将系统安装到了虚拟硬盘kylin-server-v10.img 里&#xff0c;现在有个需求&#xff0c;要读出kylin-server-v10.img中文件系统的内容。 通过fdisk命令可以看到 kylin-ser…

Docker容器(六)网络配置与数据卷

一、高级网络配置 1.1概述 当 Docker 启动时&#xff0c;会自动在主机上创建一个 docker0 虚拟网桥&#xff0c;实际上是 Linux 的一个 bridge&#xff0c;可以理解为一个软件交换机。它会在挂载到它的网口之间进行转发。 同时&#xff0c;Docker 随机分配一个本地未占用的私有…

位置编码学习

基本概念 关于位置编码的一切&#xff1a;https://kexue.fm/archives/8130#T5%E5%BC%8F 残差连接 Post Norm 关注深度 残差的意思是给前面的层搞一条“绿色通道”&#xff0c;让梯度可以更直接地回传&#xff0c;但是在Post Norm中&#xff0c;这条“绿色通道”被严重削弱…

助贷行业的业务增长工具:CRM客户管理系统的核心作用与应用流程

在当前助贷行业&#xff0c;企业如何更好地抓住客户需求、提高业务效率、优化服务体验一直是助贷企业关注的焦点。在这个背景下&#xff0c;一款优秀的CRM客户管理系统无疑成为了实现这些目标的关键。本文将探讨这样一款专为助贷行业打造的CRM客户管理系统&#xff0c;看它是如…

极市平台 | 综述:一文详解50多种多模态图像融合方法

本文来源公众号“极市平台”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;综述&#xff1a;一文详解50多种多模态图像融合方法 0 极市导读 本工作总结了50篇论文中Lidar和camera的多模态融合的一些概念方法。笔者结合原文以及自…

重庆餐饮设计公司排行榜曝光,这些企业值得关注!

在如今饮食文化多元化、餐饮产业蓬勃发展的时代&#xff0c;餐饮设计企业扮演着至关重要的角色。一个好的餐厅设计可以为顾客提供舒适、美观的用餐环境&#xff0c;也能够提升餐厅的整体形象和竞争力。重庆作为中国西南地区的经济中心和旅游胜地&#xff0c;餐饮业发展迅速&…

用二八定律分析零售数据,不就更直观了吗?

20%的商品贡献了80%的销售金额&#xff0c;你会不会想知道这些商品的销售金额、毛利、销售金额累计占比、毛利累计占比&#xff0c;会不会想知道这些商品在各个门店的销售表现&#xff1f;看是否能进一步提高销售金额&#xff0c;提高毛利。这样的报表该怎么做&#xff1f;奥威…

JVM高级篇之GC

文章目录 版权声明垃圾回收器的技术演进ShenandoahShenandoah GC体验Shenandoah GC循环过程 ZGCZGC简介ZGC的版本更迭ZGC体验&使用ZGC的参数设置ZGC的调优 版权声明 本博客的内容基于我个人学习黑马程序员课程的学习笔记整理而成。我特此声明&#xff0c;所有版权属于黑马…

Vue - 你知道Vue中computed和watch的区别吗

难度级别:中高级及以上 提问概率:70% 二者都是用来监听数据变化的,而且在日常工作中大部分时候都只是局限于简单实用,所以到了面试中很难全面说出二者的区别。接下来我们看一下,二者究竟有哪些区别呢? 先说computed,它的主要用途是监听…

Java中网络编程,Junit单元测试详解

文章目录 软件结构C/S结构B/S结构 概述三要素IP &#xff08;银行的位置&#xff09;端口 (银行中某个柜台号)协议 (填写取款单的规则)TCP通信程序TCP通信原理客户端发送数据服务端接收数据过程图三次握手 Junit单元测试概述常见的注解使用断言概述使用 软件结构 C/S结构 客户…

Windows深度学习环境----Cuda version 10.2 pytorch3d version 0.3.0

Requirements Python version 3.8.5Pytorch version: pytorch1.6.0 torchvision0.8.2 torchaudio0.7.0 cudatoolkit10.2.89pytorch3d version 0.3.0Cuda version 10.2 感觉readme文件里的不适配&#xff0c;跟pytorch官网不同 以前的 PyTorch 版本 |PyTorch的 # CUDA 10.2 c…

HDLbits 刷题 --Popcount255

A "population count" circuit counts the number of 1s in an input vector. Build a population count circuit for a 255-bit input vector. 译&#xff1a; 一个“population count”电路用于计算输入向量中1的数量。为一个255位的输入向量构建一个人口计数电路…

【免费使用AI工具】国内AI网站集合

文章目录 文心一言腾讯混元助手讯飞星火认知大模型:文心一格(绘图)云雀大模型(文本对话)智谱AI:(GLM大模型)百川智能(百川大模型)MiniMax(ABAB大模型)万维天工ChatGPT3.5镜像网站通义千问文心一言 https://yiyan.baidu.com/ 腾讯混元助手 微信搜索【腾讯混元助手】小…

金蝶BI方案的报表,主打做得快、易理解

金蝶做数据分析报表慢、步骤多、数据不够直观&#xff1f;但奥威-金蝶BI方案的报表就不一样了&#xff0c;不仅做得快&#xff0c;还十分好理解&#xff0c;因为它做出来的是随时可以按需自助的BI智能数据可视化分析报表。 有多快&#xff1f; 注册奥威BI SaaS平台&#xff0…

提升Python网络编程效率:深入学习furl库

&#x1f340; 前言 博客地址&#xff1a; CSDN&#xff1a;https://blog.csdn.net/powerbiubiu &#x1f44b; 简介 furl 是一个 Python 库&#xff0c;用于处理 URL。它提供了一个简洁而强大的接口&#xff0c;用于构建、解析和操作 URL。本文章介绍下 furl 库的使用。 &a…

01 _ 分布式缘何而起:从单兵,到游击队,到集团军

这里先来聊聊什么是分布式。 与其直接用些抽象、晦涩的技术名词去给分布式下一个定义&#xff0c;还不如从理解分布式的发展驱动因素开始&#xff0c;我们一起去探寻它的本质&#xff0c;自然而然地也就清楚它的定义了。 这里将介绍分布式的起源&#xff0c;是如何从单台计算…

申请专利有用吗 好处

申请专利&#xff1a;一项值得考虑的策略 随着科技的快速发展和市场竞争的日益激烈&#xff0c;创新成为了企业或个人取得竞争优势的关键。在这样的背景下&#xff0c;申请专利成为了许多创新者保护自己创意和技术的重要手段。 申请专利真的有用吗&#xff1f; 申请专利可以…

Golang学习笔记

Golang学习笔记 安装Golang 来源&#xff1a;linux 安装 golang - 知乎 (zhihu.com) 由于我用的是linux系统&#xff0c;所以本文采用linux的安装方式介绍&#xff0c;如果你使用的是Windows/Mac 也可以看下该文章&#xff0c;或者自己去下列地址进行操作。 Download and in…