PaddleVideo:PP-TSM 视频分类

news2024/11/27 2:19:56

本文记录:使用Paddle框架训练TSM(Temporal Shift Module

前提条件:已经安装Paddle和PadleVideo,具体可参考前一篇文章。

1-数据准备:

以UCF101为例:内含13320 个短视频,视频类别:101 种

1. 主要包括5类动作 :人和物体交互,只有肢体动作,人与人交互,玩音乐器材,各类运动

2. 每类视频被分为25组,每组包含4-7个视频,同组视频具有一些相似的特征,比如背景、人物等

3. 视频来自YouTube,25FPS码率,320x240分辨率,avi格式,DivX编码方式,平均时长7.21秒

4. 视频按照 v_X_gY_cZ.avi的格式命名,其中X表示类别、Y表示组、Z表示视频编号,例如:v_ApplyEyeMakeup_g03 c04.avi表示ApplyEyeMakeup类别下,第03组的第04个视频

标签下载、数据下载:

# 切换到ucf101目录
cd PaddleVideo/data/ucf101

# 下载annotations文件
sh download_annotations.sh

# 下载UCF101的视频文件,视频会自动解压移动到videos文件夹
sh download_videos.sh

视频抽帧:自动存储到rawframes文件夹

# 提取视频文件的frames
python extract_rawframes.py ./videos/ ./rawframes/ --level 2 --ext avi

生成list文件

# 生成视频文件的路径list
python build_ucf101_file_list.py videos/ --level 2 --format videos --out_list_path ./

# 生成frames文件的路径list
python build_ucf101_file_list.py rawframes/ --level 2 --format rawframes --out_list_path ./

参数说明:

videos/ 或者 rawframes/ : 表示视频或者frames文件的存储路径

--level 2 : 表示文件的存储结构

--format: 表示是针对视频还是frames生成路径list

--out_list_path : 表示生成的路径list文件存储位置

合并list文件

cat ucf101_train_split_*_rawframes.txt > ucf101_train.txt
cat ucf101_val_split_*_rawframes.txt > ucf101_val.txt

最终文件目录结构

├── data
|   ├── dataset
|   │   ├── ucf101
|   │   │   ├── ucf101_{train,val}.txt
|   │   │   ├── ucf101_{train,val}_split_{1,2,3}_rawframes.txt
|   │   │   ├── ucf101_{train,val}_split_{1,2,3}_videos.txt
|   │   │   ├── annotations
|   │   │   ├── videos
|   │   │   │   ├── ApplyEyeMakeup
|   │   │   │   │   ├── v_ApplyEyeMakeup_g01_c01.avi
|   │   │   │   │   └── ...
|   │   │   │   ├── YoYo
|   │   │   │   │   ├── v_YoYo_g25_c05.avi
|   │   │   │   │   └── ...
|   │   │   │   └── ...
|   │   │   ├── rawframes
|   │   │   │   ├── ApplyEyeMakeup
|   │   │   │   │   ├── v_ApplyEyeMakeup_g01_c01
|   │   │   │   │   │   ├── img_00001.jpg
|   │   │   │   │   │   ├── img_00002.jpg
|   │   │   │   │   │   ├── ...
|   │   │   │   │   │   ├── flow_x_00001.jpg
|   │   │   │   │   │   ├── flow_x_00002.jpg
|   │   │   │   │   │   ├── ...
|   │   │   │   │   │   ├── flow_y_00001.jpg
|   │   │   │   │   │   ├── flow_y_00002.jpg
|   │   │   │   ├── ...
|   │   │   │   ├── YoYo
|   │   │   │   │   ├── v_YoYo_g01_c01
|   │   │   │   │   ├── ...
|   │   │   │   │   ├── v_YoYo_g25_c05

2-模型训练

PaddleVideo/docs/zh-CN/benchmark.md at develop · PaddlePaddle/PaddleVideo · GitHub

根据benchmark性能指标选择所需模型:初步看8帧配置下,PP-TSMv2性价比不错

预训练模型下载

根据上面的选型,到 paddlevideo/modeling/backbones 目录下打开自己选择的模型

文件中 MODEL_URLS 就是预训练模型的下载路径,手动下载

放到 PaddleVideo/data 目录 

修改训练配置文件

进入PaddleVideo/configs/recognition/pptsm/v2 目录,

因为我们使用的是ucf101数据集训练,所以复制 pptsm_lcnet_k400_8frames_uniform.yaml 一份,并重命名为:pptsm_lcnet_ucf101_8frames_uniform.yaml 来进行修改

修改pretrained、num_seg、class_num、data_prefix、file_path 

开启训练

单卡训练

# 单卡训练
export CUDA_VISIBLE_DEVICES=0         #指定使用的GPU显卡id
python main.py  --validate -c configs/recognition/pptsm/v2/pptsm_lcnet_ucf101_8frames_uniform.yaml

多卡训练 

# 多卡训练
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python -B -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7"  --log_dir=log_pptsm  main.py  --validate -c configs/recognition/pptsm/v2/pptsm_lcnet_ucf101_8frames_uniform.yaml

参数说明:

-c 必选参数,指定运行的配置文件路径,具体配置参数含义参考配置文档
--validate 可选参数,指定训练时是否评估
-o: 可选参数,指定重写参数,例如: -o DATASET.batch_size=16 用于重写train时batch size大小
--gpus参数指定使用的GPU显卡id
--log_dir参数指定日志保存目录 多卡训练详细说明可以参考单机多卡训练

输出日志

运行日志,并默认保存在./log目录下

3-模型测试(可选-因为训练的时候已经测试了,没必要再去测试一次)

对于视频分类任务,模型测试时有两种不同的方式,中心采样(Uniform)和密集采样(Dense)

中心采样:速度快,适合产业应用,但精度稍低。

密集采样:精度高,但由于测试要对多个clip进行预测,比较耗时。

轻量化模型PP-TSMv2统一使用中心采样方式进行评估。PP-TSM则提供两种不同的评估方式。

3.1-中心采样测试

中心采样测试,1个视频共采样1个clips。

时序上:等分成num_seg段,每段中间位置采样1帧

空间上:中心位置采样。

也可以使用如下命令对训练好的模型进行测试:

python3 main.py --test -c configs/recognition/pptsm/v2/pptsm_lcnet_ucf101_8frames_uniform.yaml -w output/ppTSMv2/ppTSMv2_best.pdparams

3.2-中心采样测试

密集采样测试,1个视频共采样10*3=30个clips。

时序上:先等分10个片段,每段从起始位置开始,以64//num_seg为间隔连续采样num_seg帧;

空间上:左中,中心,右中3个位置采样。

python3 main.py --test -c configs/recognition/pptsm/v2/pptsm_lcnet_ucf101_8frames_uniform.yaml -w output/ppTSMv2/ppTSMv2_best.pdparams

4-导出推理模型

# 切换到output目录
cd output

# 创建inference目录存储推理模型
mkdir ppTSMv2_inference

python tools/export_model.py -c configs/recognition/pptsm/v2/pptsm_lcnet_ucf101_8frames_uniform.yaml \
                                -p output/ppTSMv2/ppTSMv2_best.pdparams \
                                -o output/ppTSMv2_inference
├── output/ppTSMv2_inference
│   ├── ppTSMv2.pdiparams       # 模型权重文件
│   ├── ppTSMv2.pdiparams.info  # 模型信息文件
│   └── ppTSMv2.pdmodel         # 模型结构文件

5-基于python进行模型推理

python tools/predict.py --input_file data/example.avi \
                           --config configs/recognition/pptsm/v2/pptsm_lcnet_ucf101_8frames_uniform.yaml \
                           --model_file output/ppTSMv2_inference/ppTSMv2.pdmodel \
                           --params_file output/ppTSMv2_inference/ppTSMv2.pdiparams \
                           --use_gpu=True \
                           --use_tensorrt=False

6-基于onnx进行模型推理

详见下一篇博文。

参考链接

1:PP-TSM视频分类模型PaddleVideo/docs/zh-CN/model_zoo/recognition/pp-tsm.md at develop · PaddlePaddle/PaddleVideo · GitHubAwesome video understanding toolkits based on PaddlePaddle. It supports video data annotation tools, lightweight RGB and skeleton based action recognition model, practical applications for video tagging and sport action detection. - PaddleVideo/docs/zh-CN/model_zoo/recognition/pp-tsm.md at develop · PaddlePaddle/PaddleVideoicon-default.png?t=N7T8https://github.com/PaddlePaddle/PaddleVideo/blob/develop/docs/zh-CN/model_zoo/recognition/pp-tsm.md

2: PP-TSMv2PaddleVideo/docs/zh-CN/model_zoo/recognition/pp-tsm_v2.md at develop · PaddlePaddle/PaddleVideo · GitHubAwesome video understanding toolkits based on PaddlePaddle. It supports video data annotation tools, lightweight RGB and skeleton based action recognition model, practical applications for video tagging and sport action detection. - PaddleVideo/docs/zh-CN/model_zoo/recognition/pp-tsm_v2.md at develop · PaddlePaddle/PaddleVideoicon-default.png?t=N7T8https://github.com/PaddlePaddle/PaddleVideo/blob/develop/docs/zh-CN/model_zoo/recognition/pp-tsm_v2.md

3: ucf101数据处理

PaddleVideo/docs/zh-CN/dataset/ucf101.md at develop · PaddlePaddle/PaddleVideo · GitHubAwesome video understanding toolkits based on PaddlePaddle. It supports video data annotation tools, lightweight RGB and skeleton based action recognition model, practical applications for video tagging and sport action detection. - PaddleVideo/docs/zh-CN/dataset/ucf101.md at develop · PaddlePaddle/PaddleVideoicon-default.png?t=N7T8https://github.com/PaddlePaddle/PaddleVideo/blob/develop/docs/zh-CN/dataset/ucf101.md

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1577459.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp引入微信小程序版本VantUI,使用VantUI的自定义tabbar,并解决自定义tabbar出现闪烁的情况

1.uniapp引入微信小程序版本VantUI 去vant官网下载源码,源码放在github,自行去下载下来 https://vant-contrib.gitee.io/vant-weapp/#/home 在pages.json的globalStyle里面注册组件 "globalStyle": {"navigationBarTextStyle": &qu…

zookeeper源码(12)命令行客户端

zkCli.sh脚本 这个命令行脚本在bin目录下: ZOOBIN="${BASH_SOURCE-$0}" ZOOBIN="$(dirname "${ZOOBIN}")" ZOOBINDIR="$(cd "${ZOOBIN}"; pwd)"# 加载zkEnv.sh脚本 if [ -e "$ZOOBIN/../libexec/zkEnv.sh" ]; …

程序员开展副业的有效方法

目录 1 项目咨询1.1 建立个人品牌和专业形象1.2 寻找潜在客户1.3 提供定制化的技术咨询方案 2 软件开发2.1 加入平台寻找项目2.2 展示个人作品2.3 与客户保持良好沟通 3 传授编程知识3.1 选择适合的分享平台3.2 创作有价值的内容3.3 与观众保持互动 4 教育培训4.1 利用在线教育…

RuoYi-Vue若依框架-在框架内用颜色选择器,页面显示色块

在用若依框架进行二次开发的时候写到自己的一个模块,其中涉及到颜色,我就想着是手动输入还是采用颜色选择器呢,考虑到后续涉及到另一个字段编码于时就采用了颜色选择器,选择完的颜色显示的是十六进制的颜色选择器,这时…

零基础学鸿蒙开发可以吗?看完这份鸿蒙入门学习资料就够了!

一、面向人群 1、在校学生、应届毕业生 2、转行人员,希望赶上时代风口,成功求职、转行 3、IT相关工作者,想快速提升技能,升职加薪的朋友 ps:文末可以申请免费试学 二、学习路线 HarmonyOS基础技能HarmonyOS就业…

数据库引论:3、中级SQL

3.中级SQL 一些更复杂的查询表达 3.1 连接表达式 拼接多张表的几种方式 3.1.1 自然连接 natural join,自动连接在所有共同属性上相同的元组 join… using( A 1 , A 2 , ⋯ A_1,A_2,\cdots A1​,A2​,⋯):使用括号里的属性进行自然连接,除了这些属性…

rsync+inotify组合实现及时远程同步

目录 Rsync(Remote Sync)简介: Rsync 主要特点: Rsync 常用命令选项: Inotify 简介: Inotify 的主要功能: 结合 Rsync 和 Inotify 实现实时同步: 操作步骤: 配置…

蓝桥杯第六届c++大学B组详解

前言: 看了很多博客以及视频讲解,感觉都不是很清楚,比较模棱两可,所以干脆自己一边想,一边写博客,也可帮助到其他人,都是根据自己的逻辑来尽量清楚简单的讲清楚题目,喜欢的不要吝啬三…

RequestMapping注解

一、RequestMapping的作用 RequestMapping 注解是 Spring MVC 框架中的一个控制器映射注解,用于将请求映射到相应的处理方法上。具体来说,它可以将指定 URL 的请求绑定到一个特定的方法或类上,从而实现对请求的处理和响应。 二、RequestMappi…

互联网需要做安全防护吗?

互联网需要做安全防护,因为网络攻击的风险随时存在。一旦遭受大规模攻击,企业很可能会受到严重影响,甚至会造成巨大的经济损失和品牌声誉受损。因此,建议企业在安全防护方面做好以下几点: 加强网络安全意识教育&#x…

linux基础篇:Linux中磁盘的管理(分区、格式化、挂载)

Linux中磁盘的管理(分区、格式化、挂载) 一、认识磁盘 1.1 什么是磁盘 磁盘是一种计算机的外部存储器设备,由一个或多个覆盖有磁性材料的铝制或玻璃制的碟片组成,用来存储用户的信息,这种信息可以反复地被读取和改写…

python WAV音频文件处理—— (2)处理PCM音频-- waveio包

破译 PCM-Encoded 的音频样本 这部分将变得稍微高级一些,但从长远来看,它将使在 Python 中处理 WAV 文件变得更加容易。 在本教程结束时,我们将构建出 waveio 包: waveio/ │ ├── __init__.py ├── encoding.py ├── met…

在git上先新建仓库-把本地文件提交远程

一.在git新建远程项目库 1.选择新建仓库 以下以gitee为例 2.输入仓库名称,点击创建 这个可以选择仓库私有化还公开权限 3.获取仓库clone链接 这里选择https模式就行,就不需要配置对电脑进行sshkey配置了。只是需要每次提交输入账号密码 二、远…

解决网站“不安全”、“不受信”、“排名下降”,你需要——「SSL证书」

在网络时代,确保网站用户数据安全显得愈发关键。SSL证书作为网络安全的关键要素,对网站而言具有重大意义。 SSL(Secure Sockets Layer)证书是一种数字证书,用于加密和验证网络通信。它存在于客户端(浏览…

【小白学机器学习12】假设检验之3:t 检验 (t检验量,t分布,查t值表等)

目录 1 t 检验的定义 1.1 来自维基百科和百度百科 1.2 别名 1.3 和其他检验的区别 2 适用情况: 2.1 关于样本情况 2.2 适合检查的情况 2.2.1 单样本均值检验(One-sample t-test) 2.2.2 两独立样本均值检验(Independent …

【随笔】Git 高级篇 -- 提交的技巧(上) rebase commit --amend(十八)

💌 所属专栏:【Git】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! 💖 欢迎大…

鸿蒙南向开发:【智能烟感】

样例简介 智能烟感系统通过实时监测环境中烟雾浓度,当烟雾浓度超标时,及时向用户发出警报。在连接网络后,配合数字管家应用,用户可以远程配置智能烟感系统的报警阈值,远程接收智能烟感系统报警信息。实现对危险及时报…

python 如何生成uuid

UUID(Universally Unique Identifier)是通用唯一识别码,在许多领域用作标识,比如我们常用的数据库也可以用它来作为主键,原理上它是可以对任何东西进行唯一的编码的。作为新手一看到类似varchar(40)这样的主键就觉得有…

ctf刷题记录2(更新中)

因为csdn上内容过多编辑的时候会很卡&#xff0c;因此重开一篇&#xff0c;继续刷题之旅。 NewStarCTF 2023 WEEK3 Include &#x1f350; <?phperror_reporting(0);if(isset($_GET[file])) {$file $_GET[file];if(preg_match(/flag|log|session|filter|input|data/i, $…

笔记 | 编译原理L1

重点关注过程式程序设计语言编译程序的构造原理和技术 1 程序设计语言 1.1 依据不同范型 过程式(Procedural programming languages–imperative)函数式(Functional programming languages–declarative)逻辑式(Logical programming languages–declarative)对象式(Object-or…