YOLOV9 + 双目测距

news2025/1/18 4:32:33

YOLOV9 + 双目测距

  • 1. 环境配置
  • 2. 测距流程和原理
    • 2.1 测距流程
    • 2.2 测距原理
  • 3. 代码部分解析
    • 3.1 相机参数stereoconfig.py
    • 3.2 测距部分
    • 3.3 主代码yolov9-stereo.py
  • 4. 实验结果
    • 4.1 测距
    • 4.2 视频展示

相关文章
1. YOLOV5 + 双目测距(python)
2. YOLOv7+双目测距(python)
3. YOLOv8+双目测距(python)

如果有用zed相机的,可以进我主页👇👇👇直接调用内部相机参数,精度比双目测距好很多
https://blog.csdn.net/qq_45077760

下载链接(求STAR):https://github.com/up-up-up-up/YOLOv9-stereo

1. 环境配置

python==3.8
Windows-pycharm
yolov9代码和yolov5类似,感觉还可以,挺好写

2. 测距流程和原理

2.1 测距流程

大致流程: 双目标定→双目校正→立体匹配→结合yolov9→深度测距

  1. 找到目标识别源代码中输出物体坐标框的代码段。
  2. 找到双目测距代码中计算物体深度的代码段。
  3. 将步骤2与步骤1结合,计算得到目标框中物体的深度。
  4. 找到目标识别网络中显示障碍物种类的代码段,将深度值添加到里面,进行显示

注:我所做的是在20m以内的检测,没计算过具体误差,当然标定误差越小精度会好一点,其次注意光线、亮度等影响因素,当然检测范围效果跟相机的好坏也有很大关系

2.2 测距原理

如果想了解双目测距原理,请移步该文章 双目三维测距(python)

3. 代码部分解析

3.1 相机参数stereoconfig.py

双目相机标定误差越小越好,我这里误差为0.1,尽量使误差在0.2以下

import numpy as np
# 双目相机参数
class stereoCamera(object):
    def __init__(self):

        self.cam_matrix_left = np.array([[1101.89299, 0, 1119.89634],
                                         [0, 1100.75252, 636.75282],
                                         [0, 0, 1]])
        self.cam_matrix_right = np.array([[1091.11026, 0, 1117.16592],
                                          [0, 1090.53772, 633.28256],
                                          [0, 0, 1]])

        self.distortion_l = np.array([[-0.08369, 0.05367, -0.00138, -0.0009, 0]])
        self.distortion_r = np.array([[-0.09585, 0.07391, -0.00065, -0.00083, 0]])

        self.R = np.array([[1.0000, -0.000603116945856524, 0.00377055351856816],
                           [0.000608108737333211, 1.0000, -0.00132288199083992],
                           [-0.00376975166958581, 0.00132516525298933, 1.0000]])

        self.T = np.array([[-119.99423], [-0.22807], [0.18540]])
        self.baseline = 119.99423  

3.2 测距部分

这一部分我用了多线程加快速度,计算目标检测框中心点的深度值

config = stereoconfig_040_2.stereoCamera()
    # 立体校正
map1x, map1y, map2x, map2y, Q = getRectifyTransform(720, 1280, config)
for path, im, im0s, vid_cap, s in dataset:
    with dt[0]:
        im = torch.from_numpy(im).to(model.device)
        im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim

    # Inference
    with dt[1]:
        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)

    # NMS
    with dt[2]:
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

    # Second-stage classifier (optional)
    # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

    # Process predictions
    for i, det in enumerate(pred):  # per image
        seen += 1
        if webcam:  # batch_size >= 1
            p, im0, frame = path[i], im0s[i].copy(), dataset.count
            s += f'{i}: '
        else:
            p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
        thread = MyThread(stereo_threading, args=(config, im0, map1x, map1y, map2x, map2y, Q))
        thread.start()
        p = Path(p)  # to Path
        save_path = str(save_dir / p.name)  # im.jpg
        txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
        s += '%gx%g ' % im.shape[2:]  # print string
        gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
        imc = im0.copy() if save_crop else im0  # for save_crop
        annotator = Annotator(im0, line_width=line_thickness, example=str(names))
        if len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

            # Print results
            for c in det[:, 5].unique():
                n = (det[:, 5] == c).sum()  # detections per class
                s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

            # Write results
            for *xyxy, conf, cls in reversed(det):
                if (0 < xyxy[2] < 1280):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(f'{txt_path}.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        x_center = (xyxy[0] + xyxy[2]) / 2
                        y_center = (xyxy[1] + xyxy[3]) / 2
                        x_0 = int(x_center)
                        y_0 = int(y_center)
                        if (0 < x_0 < 1280):
                            x1 = xyxy[0]
                            x2 = xyxy[2]
                            y1 = xyxy[1]
                            y2 = xyxy[3]

                            thread.join()
                            points_3d = thread.get_result()
                            a = points_3d[int(y_0), int(x_0), 0] / 1000
                            b = points_3d[int(y_0), int(x_0), 1] / 1000
                            c = points_3d[int(y_0), int(x_0), 2] / 1000
                            distance = ((a ** 2 + b ** 2 + c ** 2) ** 0.5)


                            # distance = []
                            # distance.append(dis)
                            if (distance != 0):  ## Add bbox to image
                                label = f'{names[int(cls)]} {conf:.2f} '
                                annotator.box_label(xyxy, label, color=colors(c, True))

                                print('点 (%d, %d) 的 %s 距离左摄像头的相对距离为 %0.2f m' % (x_center, y_center, label, distance))
                                text_dis_avg = "dis:%0.2fm" % distance
                                # only put dis on frame
                                cv2.putText(im0, text_dis_avg, (int(x2 + 5), int(y1 + 30)),
                                            cv2.FONT_ITALIC, 1.2,
                                            (0, 255, 255), 3)

3.3 主代码yolov9-stereo.py

import argparse
import os
import platform
import sys
from pathlib import Path
from stereo import stereoconfig_040_2
from stereo.stereo import stereo_40
from stereo.stereo import stereo_threading, MyThread
from stereo.dianyuntu_yolo import preprocess, undistortion, getRectifyTransform, draw_line, rectifyImage, \
    stereoMatchSGBM
import torch

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLO root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
                           increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(
        weights=ROOT / 'yolo.pt',  # model path or triton URL
        source=ROOT / 'data/images',  # file/dir/URL/glob/screen/0(webcam)
        data=ROOT / 'data/coco.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        vid_stride=1,  # video frame-rate stride
):
    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    screenshot = source.lower().startswith('screen')
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
    config = stereoconfig_040_2.stereoCamera()
    # 立体校正
    map1x, map1y, map2x, map2y, Q = getRectifyTransform(720, 1280, config)
    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim

        # Inference
        with dt[1]:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(im, augment=augment, visualize=visualize)

        # NMS
        with dt[2]:
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
            thread = MyThread(stereo_threading, args=(config, im0, map1x, map1y, map2x, map2y, Q))
            thread.start()
            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, 5].unique():
                    n = (det[:, 5] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if (0 < xyxy[2] < 1280):
                        if save_txt:  # Write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                            with open(f'{txt_path}.txt', 'a') as f:
                                f.write(('%g ' * len(line)).rstrip() % line + '\n')

                        if save_img or save_crop or view_img:  # Add bbox to image
                            c = int(cls)  # integer class
                            x_center = (xyxy[0] + xyxy[2]) / 2
                            y_center = (xyxy[1] + xyxy[3]) / 2
                            x_0 = int(x_center)
                            y_0 = int(y_center)
                            if (0 < x_0 < 1280):
                                x1 = xyxy[0]
                                x2 = xyxy[2]
                                y1 = xyxy[1]
                                y2 = xyxy[3]

                                thread.join()
                                points_3d = thread.get_result()
                                a = points_3d[int(y_0), int(x_0), 0] / 1000
                                b = points_3d[int(y_0), int(x_0), 1] / 1000
                                c = points_3d[int(y_0), int(x_0), 2] / 1000
                                distance = ((a ** 2 + b ** 2 + c ** 2) ** 0.5)


                                # distance = []
                                # distance.append(dis)
                                if (distance != 0):  ## Add bbox to image
                                    label = f'{names[int(cls)]} {conf:.2f} '
                                    annotator.box_label(xyxy, label, color=colors(c, True))

                                    print('点 (%d, %d) 的 %s 距离左摄像头的相对距离为 %0.2f m' % (x_center, y_center, label, distance))
                                    text_dis_avg = "dis:%0.2fm" % distance
                                    # only put dis on frame
                                    cv2.putText(im0, text_dis_avg, (int(x2 + 5), int(y1 + 30)),
                                                cv2.FONT_ITALIC, 1.2,
                                                (0, 255, 255), 3)


                        if save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                if platform.system() == 'Linux' and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")

    # Print results
    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'gelan-c-det.pt', help='model path or triton URL')
    parser.add_argument('--source', type=str, default=ROOT / 'data/images/a1.mp4', help='file/dir/URL/glob/screen/0(webcam)')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', default=True,action='store_true', help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    # check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

4. 实验结果

4.1 测距

请添加图片描述

4.2 视频展示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1577341.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

智慧能耗预付费系统解决方案——用户侧能源计量及收费

安科瑞电气股份有限公司 祁洁 15000363176 一、方案组织架构 二、方案特点 &#xff08;1&#xff09;多样组网&#xff0c;多样设备接入&#xff0c;多样部署&#xff1b; &#xff08;2&#xff09;集团管理、项目分级、分层拓扑&#xff1b; &#xff08;3&#xff09…

三流大学毕业,物流专业转行自述:“从月薪4K到现在月入2W+,我做到了哪些?”

我是25岁转行学python的。说实在&#xff0c;转行就是奔着挣钱去的。希望我的经历可以给想转行的朋友带来一点启发和借鉴。 先简单介绍下个人背景&#xff0c;三流大学毕业&#xff0c;物流专业&#xff0c;学习能力一般&#xff0c;没啥特别技能&#xff0c;反正就很普通的一…

Linux使用宝塔面板部署Discuz结合内网穿透实现公网访问本地论坛

文章目录 前言1.安装基础环境2.一键部署Discuz3.安装cpolar工具4.配置域名访问Discuz5.固定域名公网地址6.配置Discuz论坛 前言 Crossday Discuz! Board&#xff08;以下简称 Discuz!&#xff09;是一套通用的社区论坛软件系统&#xff0c;用户可以在不需要任何编程的基础上&a…

【LAMMPS学习】八、基本知识的讨论(1.3)从一个输入脚本运行多个模拟

8. 基本知识的讨论 此部分描述了如何使用 LAMMPS 为用户和开发人员执行各种任务。术语表页面还列出了 MD 术语&#xff0c;以及相应 LAMMPS 手册页的链接。 LAMMPS 源代码分发的 examples 目录中包含的示例输入脚本以及示例脚本页面上突出显示的示例输入脚本还展示了如何设置和…

二分查找 -- 力扣(LeetCode)第704题

题目 https://leetcode.cn/problems/binary-search/description/ 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xff0c;写一个函数搜索 nums 中的 target&#xff0c;如果目标值存在返回下标&#xff0c;否则返回 -1。 示例…

【STL】查找

#include<algorithm>binary_search 该函数功能是查找指定元素是否存在&#xff0c;存在返回true&#xff0c; 不存在返回false 函数原型&#xff1a;bool binary_search(iterator beg, iterator end, value); 注意&#xff1a;该函数内部通过二分查找实现&#xff0c;二…

字节出来的太厉害了.....

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 关注公众号&#xff1a;互联网杂货铺&#xff0c;回复1 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 前段时间公司缺人&#xff0c;也面了许多测试&#xff0…

LangChain - OpenGPTs

文章目录 MessageGraph 消息图认知架构AssistantsRAGChatBot 持久化配置新模型新工具astream_events总结 关键链接&#xff1a; OpenGPT GitHub 存储库YouTube 上的 OpenGPT 演练LangGraph&#xff1a;Python、JS 两个多月前&#xff0c;在 OpenAI 开发日之后&#xff0c;我们…

书生·浦语大模型-第三节课笔记/作业

笔记 作业 原版 prompt控制节奏&#xff0c;实现类似关键词检索、主题、信息抽取等功能注意这里根据llm返回的topic (prompt: 告诉我这句话的主题&#xff0c;直接说主题不要解释)进行召回检索(CacheRetriever), 并再次让大模型判断query与返回的检索的相关程度. 如果本地检索…

男生穿什么裤子显腿长?男生显腿长裤子分享

现在市面上出现很多劣质而且不耐洗不耐穿的裤子&#xff0c;不但穿着体验感差&#xff0c;而且还可能会对皮肤有影响。为此作为一名穿搭博主&#xff0c;我专门做了这篇关于男生裤子的测评&#xff0c;希望大家能够通过一下的科普知识&#xff0c;对选择裤子有更详细的了解。 什…

UTONMOS区块链游戏世界的冒险之旅

在数字世界的浪潮中&#xff0c;utonmos的多款区块链游戏正引领着一场前所未有的游戏革命。utonmos令人兴奋的游戏融合了区块链技术的力量&#xff0c;为玩家们带来了全新的体验和无限的可能性。 utonmos区块链游戏不仅仅是普通的游戏&#xff0c;它是一个一款款充满创新和策略…

Zabbix4.0之LDAP认证

相信很多朋友的公司都在使用Zabbix开源系统作为企业的网络、服务器等系统、设备的监控平台&#xff0c;当我们所在的企业或组织比较大时&#xff0c;人员众多&#xff0c;系统众多&#xff0c;各系统的账户也就多了起来&#xff0c;一个同事在工作时要记住很多不同的用户名和密…

前端| 富文本显示不全的解决方法

背景 前置条件&#xff1a;编辑器wangEditor vue项目 在pc端进行了富文本操作&#xff0c; 将word内容复制到编辑器中&#xff0c; 进行发布&#xff0c; pc端正常&#xff0c; 在手机端展示的时候 显示不全 分析 根据h5端编辑器内容的数据展示&#xff0c; 看到有一些样式造…

从路由器syslog日志监控路由器流量

路由器是关键的网络基础设施组件&#xff0c;需要随时监控&#xff0c;定期监控路由器可以帮助管理员确保路由器通信正常。日常监控还可以清楚地显出通过网络的流量&#xff0c;通过分析路由器流量&#xff0c;安全管理员可及早识别可能发生的网络事件&#xff0c;从而避免停机…

Longan Pi 3H 开发板体验

Longan Pi 3H 开发板体验 开箱内容 打开包装&#xff0c;你可以看到以下物品 一个Longan Pi 3H盒子Longan Pi 3H开发板 产品基本介绍 Longan Pi 3H 是基于 Longan Module 3H 核心板的 ARM Linux 开发板&#xff0c;以 H618 (Quad core ARM Cortex-A531.5Ghz , 64-bit) 为主控…

Qt 4.7作业

1、自由发挥应用场景实现一个登录窗口界面。 【可以是QQ登录界面、也可以是自己发挥的登录界面】 要求&#xff1a;尽量每行代码都有注释 #include "mywidget.h"MyWidget::MyWidget(QWidget *parent): QWidget(parent) {//设置窗口标题this->setWindowTitle(&q…

图片批量高效修改像素,自定义缩小JPG图片像素,支持画质优先

在数字时代&#xff0c;图片已经成为我们生活中不可或缺的一部分。从社交媒体的头像&#xff0c;到电商平台的商品展示&#xff0c;再到新闻报道的配图&#xff0c;图片无处不在。然而&#xff0c;你是否曾经遇到过因为图片像素过高或过低而带来的困扰&#xff1f;现在&#xf…

是时候开启Copilot下一篇章:Microsoft AI

微软总裁兼首席执行官萨提亚纳德拉欢迎 Mustafa Suleyman 和 Karn Simonyan 加入微软公司&#xff0c;领导一个新成立的部门 —— Microsoft AI&#xff0c;旨在开发 Copilot 和其他的面向消费者的 AI 产品和研究。 Mustafa Suleyman 将担任 Microsoft AI 执行副总裁&#xf…

2024/4/2—力扣—不用加号的加法

代码实现&#xff1a; 思路&#xff1a;位运算&#xff0c;利用了异或和与的特性&#xff0c;异或操作与加操作的区别在于异或操作在二进制状态下两个数同1不进位&#xff0c;只是置为0&#xff0c;其他均相同&#xff0c;那么使用与运算计算进位值&#xff0c;补齐异或操作的缺…

asm磁盘组无法写入问题-处理中

有个11204的rac环境&#xff0c;没应用补丁&#xff0c;5号突然报归档满&#xff0c;登录环境后发现奇怪&#xff0c;一个1T磁盘建成的DATA磁盘组使用了近800G&#xff0c;读写正常&#xff0c;一个1.5T磁盘建成的FRA磁盘组&#xff0c;目前还剩余729551M&#xff0c;无法写入归…