探究“大模型+机器人”的现状和未来

news2025/1/27 13:09:14

基础模型(Foundation Models)是近年来人工智能领域的重要突破,在自然语言处理和计算机视觉等领域取得了显著成果。将基础模型引入机器人学,有望从感知、决策和控制等方面提升机器人系统的性能,推动机器人学的发展。由斯坦福大学、普林斯顿大学等多所顶尖学府,以及英伟达、Google DeepMind等众多知名企业组成的联合研究团队,发布了一篇综述报告。该报告全面梳理了基础模型在机器人学各个领域的应用现状,分析了其优势和局限性,并展望未来的研究方向。

超维开关柜带电操作机器人

基础模型通过在大规模数据上进行预训练,学习到了丰富的语义信息和世界知识。与传统的特定任务模型不同,基础模型具有较强的通用性和迁移能力,能够应用于多种不同的下游任务。一方面,基础模型能够作为机器人系统的先验知识,减少对任务特定数据的依赖;另一方面,基础模型可以作为机器人系统的通用组件,实现感知、推理和规划等核心功能。

基础模型主要包括以下几类:

1、大型语言模型(Large Language Models):如BERT、GPT-3、PaLM等,主要应用于自然语言处理任务。

2、视觉Transformer模型:如ViT、Swin Transformer等,主要应用于计算机视觉任务。

3、视觉-语言模型(Vision-Language Models):如CLIP、ALIGN等,通过跨模态对比学习实现视觉与语言的对齐。

4、具身多模态语言模型(Embodied Multimodal Language Models):如R3M,将视觉、语言与机器人动作相结合进行学习。

5、视觉生成模型(Visual Generative Models):如扩散模型和GAN等,用于视觉信号的生成。

机器人感知中的基础模型应用

感知是机器人系统的重要组成部分,旨在从原始传感器数据中提取语义信息,以支持决策和控制。传统的机器人感知方法依赖于特定场景下的特征工程和模型设计,难以适应开放环境的复杂性和多样性。近年来,深度学习的发展使得从大规模数据中端到端地学习感知模型成为可能。基础模型进一步扩展了这一范式,使得机器人系统能够利用更广泛的先验知识,实现更强大、更通用的感知能力。

基础模型为机器人感知提供了先验知识和泛化能力。在视觉感知方面,视觉Transformer模型实现了更鲁棒、更通用的特征提取;在语义感知方面,视觉-语言模型实现了开放词汇的识别和理解;在交互感知方面,具身语言模型实现了跨模态的指令跟随和技能学习。未来,如何进一步提高基础模型在机器人感知任务中的性能和效率,如何利用多模态信息实现更高层次的场景理解,都是亟需探索的方向。

机器人决策与规划中的基础模型应用

超维机房轮式巡检机器人

决策与规划是机器人系统的核心功能,旨在根据感知信息和任务目标,自主地选择行动策略并生成动作序列。传统的机器人决策与规划方法依赖于精确的环境模型和专家知识,难以适应非结构化环境的不确定性和复杂性。近年来,深度强化学习的发展使得机器人能够从数据中学习决策与规划策略,但其样本效率和泛化能力仍有待提高。基础模型为机器人决策与规划引入了丰富的先验知识,有望进一步促进该领域的发展。

基础模型为机器人决策与规划引入了语言理解、常识推理等关键能力。在任务规划方面,大型语言模型实现了将自然语言指令转化为可执行计划;在运动规划方面,扩散模型实现了平滑、多样轨迹的生成;在策略学习方面,视觉-语言模型实现了高效、泛化的策略学习。尽管取得了可喜的进展,但如何进一步提高基础模型在机器人决策与规划中的可解释性、安全性和实时性仍是亟需探索的问题。此外,如何将决策与规划与感知、控制更紧密地结合,构建端到端的自主系统,也是未来的重要研究方向。

机器人控制中的基础模型应用

超维室内轨道巡检机器人

控制是机器人系统的执行部分,旨在根据感知信息和决策指令,精准、稳定地控制机器人执行器完成预定动作。传统的机器人控制方法依赖于精确的动力学模型和专家知识,难以适应非结构化环境的不确定性和复杂性。近年来,学习型控制的发展使得机器人能够从数据中学习控制策略,但其泛化能力和鲁棒性仍有待提高。基础模型为机器人控制引入了丰富的先验知识和泛化能力,有望进一步突破传统控制方法的局限性。

超维智能巡检机器人核心竞争力

基于SLAM无轨导航技术:采用了激光SLAM、RGBD相机、惯性导航相结合的综合定位导航方案,率先引入了激光雷达+深度摄像机+辅助信标的方式进行“综合性导航+避障”解决方案,达到<1°的角度精度以及±2cm级别的定位精度。

基于AI深度学习的视觉识别:整合Yolo、RepVGG和HRnet等先进模型深度优化打造了集检测、分割和识别于一体的深度学习算法。在服务端边缘端均可快速部署,具有高速度、高精度、高性能的优势,在实际交付中可达到96%以上准确率。

AI大数据分析:AI大数据分析,可同时分析多载具上传的数据,对机器人巡检数据进行实时采集、留存、告警管理。分布式边缘计算架构,提高巡检实时性,降低系统总线带宽需求。

自主研发的机器人调度系统:超维自主研发了AIoT机器人联合巡检管理平台,把AI技术引入到机器人系统中,构建软硬件一体的机器人智能巡检解决方案,使机器人具备目标检测、音视频采集分析、人脸识别、动环监测等功能。

自主设计与制造:机器人本体设计与制造方面,依托于超维在金融、电力等大型客户的积累,从机器人的通用底盘,智能硬件到外观结构与设计,整机电路设计,上位机及面向应用场景开发,掌握从产品设计到量产十多个环节。

“大模型+巡检机器人”的未来展望

超维管廊轨道巡检机器人

大型语言模型和智能巡检机器人的结合将为设备管理和运维领域带来巨大的改变和发展机会。这种结合将推动设备管理向智能化、自主化、预测性和安全性方向发展,为各行业提供更高效、更可靠、更安全的运营和生产环境。

1. 智能化巡检与维护: 结合大型语言模型和智能巡检机器人,可以实现更智能化的设备巡检和维护。语言模型可以处理和分析大量的设备数据和报告,提供实时的问题诊断和解决方案,从而降低设备故障率和维修成本。

2. 自主化运行和优化: 大型语言模型和智能巡检机器人的结合将使机器人系统具备更高的自主化运行和优化能力。机器人可以根据语言模型分析的数据和趋势,自主调整巡检路线和周期,优化资源利用,提升运行效率和性能。

3. 预测性维护和故障预防: 结合大型语言模型的预测能力和机器人的巡检能力,可以实现更加精准的预测性维护和故障预防。系统可以通过分析历史数据和趋势,提前发现潜在问题,并采取相应措施,避免设备故障和停机时间。

4. 智能化数据分析与决策支持: 大型语言模型和智能巡检机器人的结合还可以实现更智能化的数据分析和决策支持。机器人可以收集大量的设备数据并与语言模型进行分析,为管理人员提供实时的数据报告、趋势分析和决策建议,帮助他们做出更加明智的决策。

5. 安全管理和环境监测: 进一步结合大型语言模型和智能巡检机器人可以实现更全面的安全管理和环境监测。机器人可以巡检设备状态、环境条件等,并根据语言模型分析的数据,提供安全预警和环境优化建议,保障工作场所的安全和生产环境的良好状态。

大型语言模型和机器人技术的未来展望非常广阔,它们的结合将推动人工智能技术向更加智能化、人性化、个性化的方向发展,为人类社会带来更多便利和进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1575759.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

javaer 为什么称redis、rabbitmq这些东西为中间件?

中间件&#xff08;Middleware&#xff09;是位于客户端和服务器端之间的软件服务层&#xff0c;它提供了一种通用服务的方式&#xff0c;帮助不同的应用程序、系统组件和服务之间进行交互和数据交换。中间件隐藏了底层的复杂性&#xff0c;使得开发者可以专注于业务逻辑的实现…

基于JSP SSM的社区生活超市管理系统

目录 背景 技术简介 系统简介 界面预览 背景 随着时代步伐的加速&#xff0c;计算机技术已广泛而深刻地渗透到社会的各个层面。随着居民生活水平的持续提升&#xff0c;人们对社区生活超市的期望和管理要求也越来越高。随着社区生活超市数量的稳步增长&#xff0c;开发一个…

Coding and Paper Letter(八十八)

系列重启之CPL。 1 Coding: 1.一个Python库用来分析城市路网的工具箱&#xff0c;城市形态分析工具。 Madina 2.SkyPilot&#xff1a;在任何云上运行 LLM、AI 和 Batch。 通过简单的界面即可实现最大程度的节省性能、最高的 GPU 可用性和托管执行。 skypilot 3.探索美国卫…

Apache-Pulsar安装操作说明

说明 Pulsar 是一种用于服务器到服务器消息传递的多租户高性能解决方案。 Pulsar 的主要特性如下&#xff1a; 对 Pulsar 实例中的多个集群的本机支持&#xff0c;并跨集群无缝地复制消息。 极低的发布和端到端延迟。 无缝可扩展至超过一百万个主题。 一个简单的客户端 API&…

arcgis10.5安装步骤

目录 一、安装License 二、安装ArcGIS_Desktop 三、安装汉化包&#xff0c;解压后&#xff0c;直接双击等待安装即可 一、安装License 双击ArcGIS_License_Manager_Windows_105_154033 选择【Next】 勾选I accept&#xff0c;然后选择【Next】 选择License的安装目录&#x…

实战webSocket压测(三)Jmeter真实接口联调

背景&#xff1a; 接口地址为&#xff1a;ws://sunlei.demo 接口说明&#xff1a;websocket接口&#xff0c;首次连接&#xff0c;通过Text请求设置开启标志&#xff0c;然后通过wav文件流传输&#xff0c;达到后端服务可以根据传输信息进行解析满足指定标准后&#xff0c;web…

SpringBoot响应式RedisClient配置

大多数场景&#xff0c;默认配置的Redis客户端不满足业务场景&#xff0c;根源在于Redis key、value 序列化反序列化问题。因此&#xff0c;有必要配置自定义的客户端来满足需求。 默认配置源码如下&#xff0c;采用jdk序列化/反序列化方式进行&#xff0c;我们只需要配置相同…

SpringMVC数据响应和请求

文章目录 1.SpringMVC简介2. SpringMVC快速入门3. SpringMVC执行的流程4.SpringMVC注解解释5. 视图解析器6.SpringMVC的数据响应6.1返回ModelView对象6.2直接返回字符串6.3返回json字符串 7.SpringMVC获得请求数据7.1 获得基本类型参数7.2获得POJO类型参数7.3获取数组类型参数7…

基于Swin Transformers的乳腺癌组织病理学图像多分类

乳腺癌的非侵入性诊断程序涉及体检和成像技术&#xff0c;如乳房X光检查、超声检查和磁共振成像。成像程序对于更全面地评估癌症区域和识别癌症亚型的敏感性较低。 CNN表现出固有的归纳偏差&#xff0c;并且对于图像中感兴趣对象的平移、旋转和位置有所不同。因此&#xff0c;…

WPS解决插入公式在正文带来行间距变大问题

问题描述 写论文解释公式时&#xff0c;插入对应的变量&#xff0c;导致行间距变大&#xff0c;如图 显然上文与下文行间距不等。但无法通过修改数值修改下文行间距。 解决办法

(已解决)引入本地bootstrap无效,bootstrap和jquery的引入

问题&#xff1a; 首先我是跟着张天宇老师下载的bootstrap文件&#xff0c;新建了一个css文件夹&#xff0c;但是这样子<link rel"stylesheet" type"text/css" src"./css/bootstrap.css">在index.html引入没有用。 解决办法: 1.把建立的…

贪心算法|1005.K次取反后最大化的数组和

力扣题目链接 class Solution { static bool cmp(int a, int b) {return abs(a) > abs(b); } public:int largestSumAfterKNegations(vector<int>& A, int K) {sort(A.begin(), A.end(), cmp); // 第一步for (int i 0; i < A.size(); i) { // 第二步if…

DSOX3034T是德科技DSOX3034T示波器

181/2461/8938产品概述&#xff1a; 特点: 带宽:350 MHz频道:4存储深度:4 Mpts采样速率:5 GSa/s更新速率:每秒1000000个波形波形数学和FFT自动探测接口用于连接、存储设备和打印的USB主机和设备端口 触摸: 8.5英寸电容式触摸屏专为触摸界面设计 发现: 业界最快的无损波形更…

MSOLSpray:一款针对微软在线账号(AzureO365)的密码喷射与安全测试工具

关于MSOLSpray MSOLSpray是一款针对微软在线账号&#xff08;Azure/O365&#xff09;的密码喷射与安全测试工具&#xff0c;在该工具的帮助下&#xff0c;广大研究人员可以直接对目标账户执行安全检测。支持检测的内容包括目标账号凭证是否有效、账号是否启用了MFA、租户账号是…

[开源]基于SVM的时间序列预测python代码

整理了SVM的时间序列预测python代码分享给大家。记得点赞哦 #!/usr/bin/env python # coding: utf-8import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn import preprocessing from sklearn.metrics import mean_squared_error from math i…

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第九套

华为海思校园招聘-芯片-数字 IC 方向 题目分享&#xff08;有参考答案&#xff09;——第九套 部分题目分享&#xff0c;完整版获取&#xff08;WX:didadidadidida313&#xff0c;加我备注&#xff1a;CSDN huawei数字芯片题目&#xff0c;谢绝白嫖哈&#xff09; 单选 1&…

MTK i500p AIoT解决方案

一、方案概述 i500p是一款强大而高效的AIoT平台&#xff0c;专为便携式、家用或商用物联网应用而设计&#xff0c;这些应用通常需要大量的边缘计算&#xff0c;需要强大的多媒体功能和多任务操作系统。该平台集成了Arm Cortex-A73 和 Cortex-A53 的四核集群&#xff0c;工作频…

2024 Tuxera NTFS for Mac功能介绍及如何安装使用

随着科技的发展&#xff0c;我们的日常生活和工作越来越依赖于电子设备。而在这些设备中&#xff0c;Mac由于其出色的稳定性和易用性&#xff0c;成为了许多用户的首选。然而&#xff0c;尽管Mac自带的文件系统已经足够强大&#xff0c;但仍有一些用户希望获得更加高效、稳定的…

Ubuntu22.04平台编译完美解决问题“error: GLSL 4.5 is not supported.”【GLSL(OpenGL着色器语言)】

GLSL介绍 GLSL&#xff08;OpenGL着色器语言&#xff09;是用于编写OpenGL着色器程序的语言。GLSL 4.5 是 GLSL 的一个版本&#xff0c;引入了许多新的特性和改进&#xff0c;旨在提高着色器编程的灵活性和性能。GLSL 4.5 工具通常是用于编写、调试和优化 GLSL 4.5 着色器代码…

网络基础知识入门

目录 一、局域网与广域网 1、局域网 2、广域网 二、协议 1、概念 2、协议的理解 3、协议的分层 1、分层 2、OSI七层模型 三、网络传输基本流程 1、报头 2、局域网通信原理 3、跨网络传输流程 四、IP地址和MAC地址 1、IP地址 2、MAC地址 3、两者的区别 一、局域…