基于Swin Transformers的乳腺癌组织病理学图像多分类

news2025/1/27 13:01:19

乳腺癌的非侵入性诊断程序涉及体检和成像技术,如乳房X光检查、超声检查和磁共振成像。成像程序对于更全面地评估癌症区域和识别癌症亚型的敏感性较低。

CNN表现出固有的归纳偏差,并且对于图像中感兴趣对象的平移、旋转和位置有所不同。因此,通常在训练CNN模型时应用图像增强。


Swin Transformer是视觉转换器的变体,基于非重叠移位窗口的概念,是一种用于各种视觉检测任务的成熟方法。

用于分类任务的VIT实现全局自我注意力,其中计算图像补丁和所有其他补丁之间的关联。这种全局量化导致了关于补丁数量的二次计算复杂性,使得它不太适合处理高分辨率图像。Swin Transformer工作在移位的窗口上,可以提供可变的图像补丁分辨率。

为了高效建模,提出并计算局部窗口内的自注意力,并且以不重叠的方式排列窗口以均匀划分图像。基于窗口的自注意力具有线性复杂性和可扩展性。基于窗口的自注意力的建模能力是有限的,因为它缺乏跨窗口的连接。因此,提出了一种移位窗口分区方法,在连续旋转变压器块的分区配置之间交替进行,以允许跨窗口连接,同时保持非重叠窗口的高效计算。

基于乳房x光检查

在从特定感兴趣区域(ROI)进行分类时,从乳房X光片中考虑的典型特征是肿块大小、ROI的不规则形状、ROI边界的均匀性和组织密度。将这些手工制作的特征输入到支持向量机、k近邻、逻辑回归、二叉决策树和人工神经网络等分类器中进行分类。

基于超声图像检查

超声检查也是非侵入性的,基于机器学习的方法包括基于感兴趣区域的放射性特征,用于使用各种机器学习分类器进行分类。使用希尔伯特变换标记控制分水岭变换提取形状和纹理特征,并将其进一步馈送到KNN分类器和集成决策树模型。

基于组织病理学图像

非侵入性成像程序可能无法识别癌症区域及其亚型。为了弥补这一缺陷,活检被用于更多样化地研究乳腺组织中的恶性肿瘤。活检包括收集样本并在显微镜载玻片上对组织进行染色,以便更好地观察细胞质和细胞核。

BreakHis数据集

BreaKHis数据集由82例患者的乳腺肿瘤手术活检获得的7909张显微RGB图像组成,放大倍率分别为50倍、100倍、200倍和400倍。数据包括良性和恶性亚型。此外,良性癌症亚型包括纤维腺瘤、管状腺瘤、叶状瘤和腺病,而恶性亚型包括导管癌、乳头状癌、小叶癌和粘液性癌。

 Swin Transformer

准备工作

  1. 将700*640的原始图像分辨率调整为224*224
  2. 将输入尺寸为H\times W\times 3的RGB图像将原始的起始补丁大小分割成大小为4*4的小补丁
  3. 每个图象补丁的尺寸为4\times 4\times 3=48
  4. 在大小为48的原始特征张量上应用线性嵌入层,将其投影到特征维度C上

体系结构

  1.  将尺寸为C的补丁线性嵌入上应用几个具有自注意力的Swin Transformer块,保证tokens的数量为\frac{H}{4}\times \frac{W}{4},线性嵌入层与Swin Transformer一起构成Swin Transformer体系结构的第一阶段。
  2. 为了便于分层表示,从Swin Transformer Block架构的第二阶段开始,通过补丁合并层来降低补丁的数量。第二阶段的补丁合并层将每组2*2相邻补丁的特征进行拼接,并在4C维拼接特征上应用线性层。这样可以将补丁的数量减少了4倍,并且将线性层的输出维度为2C,第二阶段的输出补丁数保持在\frac{H}{8}\times \frac{W}{8}
  3. 这样的过程重复两次,构成阶段3和阶段4.导致其输出分辨率分别为\frac{H}{16}\times \frac{W}{16}\frac{H}{32}\times \frac{W}{32}

 \hat{z}^{l}=W-MHSA(LN(z^{l-1}))+z^{l-1}

z^{l}=MLP(LN(\hat{z}^{l}))+\hat{z}^{l}

\hat{z}^{l+1}=SW-MHSA(LN(z^{l}))+z^{l}

z^{l+1}=MLP(LN(\hat{z}^{l+1}))+\hat{z}^{l+1}

模型交叉验证和测试

原始数据集中图像的强度值在0 ~ 255之间,将这些强度缩放为−1和1之间的值。当包含所有缩放因子的图像时,数据集被分为62:8:30分别用于训练、验证和测试。当从特定缩放因子的图像中实现分类时,遵循72:8:20的分割。通过经验选择Swin Transformer的超参数,并使用验证集来确保模型不会过拟合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1575746.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WPS解决插入公式在正文带来行间距变大问题

问题描述 写论文解释公式时,插入对应的变量,导致行间距变大,如图 显然上文与下文行间距不等。但无法通过修改数值修改下文行间距。 解决办法

(已解决)引入本地bootstrap无效,bootstrap和jquery的引入

问题&#xff1a; 首先我是跟着张天宇老师下载的bootstrap文件&#xff0c;新建了一个css文件夹&#xff0c;但是这样子<link rel"stylesheet" type"text/css" src"./css/bootstrap.css">在index.html引入没有用。 解决办法: 1.把建立的…

贪心算法|1005.K次取反后最大化的数组和

力扣题目链接 class Solution { static bool cmp(int a, int b) {return abs(a) > abs(b); } public:int largestSumAfterKNegations(vector<int>& A, int K) {sort(A.begin(), A.end(), cmp); // 第一步for (int i 0; i < A.size(); i) { // 第二步if…

DSOX3034T是德科技DSOX3034T示波器

181/2461/8938产品概述&#xff1a; 特点: 带宽:350 MHz频道:4存储深度:4 Mpts采样速率:5 GSa/s更新速率:每秒1000000个波形波形数学和FFT自动探测接口用于连接、存储设备和打印的USB主机和设备端口 触摸: 8.5英寸电容式触摸屏专为触摸界面设计 发现: 业界最快的无损波形更…

MSOLSpray:一款针对微软在线账号(AzureO365)的密码喷射与安全测试工具

关于MSOLSpray MSOLSpray是一款针对微软在线账号&#xff08;Azure/O365&#xff09;的密码喷射与安全测试工具&#xff0c;在该工具的帮助下&#xff0c;广大研究人员可以直接对目标账户执行安全检测。支持检测的内容包括目标账号凭证是否有效、账号是否启用了MFA、租户账号是…

[开源]基于SVM的时间序列预测python代码

整理了SVM的时间序列预测python代码分享给大家。记得点赞哦 #!/usr/bin/env python # coding: utf-8import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn import preprocessing from sklearn.metrics import mean_squared_error from math i…

华为海思校园招聘-芯片-数字 IC 方向 题目分享——第九套

华为海思校园招聘-芯片-数字 IC 方向 题目分享&#xff08;有参考答案&#xff09;——第九套 部分题目分享&#xff0c;完整版获取&#xff08;WX:didadidadidida313&#xff0c;加我备注&#xff1a;CSDN huawei数字芯片题目&#xff0c;谢绝白嫖哈&#xff09; 单选 1&…

MTK i500p AIoT解决方案

一、方案概述 i500p是一款强大而高效的AIoT平台&#xff0c;专为便携式、家用或商用物联网应用而设计&#xff0c;这些应用通常需要大量的边缘计算&#xff0c;需要强大的多媒体功能和多任务操作系统。该平台集成了Arm Cortex-A73 和 Cortex-A53 的四核集群&#xff0c;工作频…

2024 Tuxera NTFS for Mac功能介绍及如何安装使用

随着科技的发展&#xff0c;我们的日常生活和工作越来越依赖于电子设备。而在这些设备中&#xff0c;Mac由于其出色的稳定性和易用性&#xff0c;成为了许多用户的首选。然而&#xff0c;尽管Mac自带的文件系统已经足够强大&#xff0c;但仍有一些用户希望获得更加高效、稳定的…

Ubuntu22.04平台编译完美解决问题“error: GLSL 4.5 is not supported.”【GLSL(OpenGL着色器语言)】

GLSL介绍 GLSL&#xff08;OpenGL着色器语言&#xff09;是用于编写OpenGL着色器程序的语言。GLSL 4.5 是 GLSL 的一个版本&#xff0c;引入了许多新的特性和改进&#xff0c;旨在提高着色器编程的灵活性和性能。GLSL 4.5 工具通常是用于编写、调试和优化 GLSL 4.5 着色器代码…

网络基础知识入门

目录 一、局域网与广域网 1、局域网 2、广域网 二、协议 1、概念 2、协议的理解 3、协议的分层 1、分层 2、OSI七层模型 三、网络传输基本流程 1、报头 2、局域网通信原理 3、跨网络传输流程 四、IP地址和MAC地址 1、IP地址 2、MAC地址 3、两者的区别 一、局域…

基于微信小程序的无中介租房系统

本基于微信小程序的无中介租房系统主要实现了房东功能模块、租客功能模块和管理员功能模块三大部分&#xff0c;系统结构图如图4-1所示。 4.3.2 数据库表设计 本基于微信小程序的无中介租房系统在开发过程中使用MySQL数据库系统进行系统数据的储存&#xff0c;以下是本系统的主…

倍讯科技Ethernet/iP转modbusTCP网关在电厂里为通信设备搭建桥梁

在电厂里&#xff0c;Ethernet/IP网关扮演着极为重要的角色&#xff0c;它作为不同设备和系统之间的通信桥梁&#xff0c;使得基于不同协议的设备能够无缝交流&#xff0c;从而实现整个电厂的高效、可靠运行。Ethernet/IP网关的使用提高了数据的实时性和可靠性&#xff0c;优化…

蓝桥杯 历届真题 杨辉三角形【第十二届】【省赛】【C组】

资源限制 内存限制&#xff1a;256.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 思路&#xff1a; 由于我第一写没考虑到大数据的原因&#xff0c;直接判断导致只得了40分&#xff0c;下面是我的代码&#xff1a; #…

Flutter第六弹 基础列表ListView

目标&#xff1a; 1&#xff09;Flutter有哪些常用的列表组建 2&#xff09;怎么定制列表项Item&#xff1f; 一、ListView简介 使用标准的 ListView 构造方法非常适合只有少量数据的列表。我们还将使用内置的 ListTile widget 来给我们的条目提供可视化结构。ListView支持…

一个更难破解的加密算法 Bcrypt

BCrypt是由Niels Provos和David Mazires设计的密码哈希函数&#xff0c;他是基于Blowfish密码而来的&#xff0c;并于1999年在USENIX上提出。 除了加盐来抵御rainbow table 攻击之外&#xff0c;bcrypt的一个非常重要的特征就是自适应性&#xff0c;可以保证加密的速度在一个特…

深入理解GO语言——GC垃圾回收二

文章目录 前言一、Go V1.5的三色并发标记法总结 前言 书接上回&#xff0c;无论怎么优化&#xff0c;Go V1.3都面临这个一个重要问题&#xff0c;就是mark-and-sweep 算法会暂停整个程序 。 Go是如何面对并这个问题的呢&#xff1f;接下来G V1.5版本 就用 三色并发标记法 来优…

基于SpringBoot的“垃圾分类网站”的设计与实现(源码+数据库+文档+PPT)

基于SpringBoot的“垃圾分类网站”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBoot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 系统功能界面图 用户登录、用户注…

stable-diffusion-webui安装教程

现在AI开始进入绘画领域,并且能自动根据文本来创建图片出来,这是一个划时代的进步。 这时候,我也不能落后,要紧跟上时代的步伐,那么也来学习一下stable-diffusion的使用,这样也算多一项对技术的认识,提高对AI的认知。 从网上看到很多stable-diffusion-webui的安装,其…

石器时代_单机版_1.0到9.0全部版本集_内附教程

一. 版本介绍图 二. 运行环境 pc单机&#xff0c;可在所有windows系统畅玩&#xff0c;内附安装教程。 三. 源码获取 https://githubs.xyz/y27.html