【C++】C++中的list

news2024/12/24 21:37:18

一、介绍

       官方给的 list的文档介绍

简单来说就是:

        list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素。

这个时候大家可能觉得,都是有序列表,那么和vector有什么区别和对比吗?实际上和我们学习数据结构时对链表和数组的对比很像,我来介绍一下:
 

std::list

  • std::list 是一个双向链表,支持在常数时间内对序列的任何位置进行插入和删除操作。
  • 由于其链表的性质,list 不支持快速随机访问,即不能通过索引以常数时间访问元素(例如 list[5] 是非法的)。
  • list 更适用于元素频繁插入和删除的场景,尤其是在序列的头部和尾部,或者你不需要通过索引来访问元素。
  • 迭代器失效问题较少,插入和删除操作不会导致除了被操作的元素之外的迭代器失效。
  • 在内存中不是连续存储的,因此不支持指针算术运算,并且可能导致较差的缓存性能。

std::vector

  • std::vector 是一个动态数组,可以在末尾快速地添加或移除元素(均摊常数时间复杂度),而且支持快速随机访问,即可以以常数时间访问任意位置的元素。
  • vector 的中间或开头插入或删除元素可能会导致较高的性能开销,因为这些操作需要移动插入点之后(或删除点之后)的所有元素。
  • 适用于需要经常随机访问元素,但对于插入和删除的频率较低的场景。
  • 在内存中是连续存储的,这意味着可以使用指针算术,并且有助于优化缓存使用。
  • vector 重新分配更大的内存空间以容纳更多元素时,所有的迭代器、引用和指针都可能失效。

那么list到底长什么样子呢?上图片,是不是就好理解了

二、list的使用

        作为STL(标准模板库)中的一个类,我们这篇blog的任务就是学习其的使用。

构造函数

构造函数接口说明
list()构造空的list
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)[first, last)区间中的元素构造list

上面虽然用了不少代名词,我们直接上代码例子分析自然就清楚了,分析在代码中。

(如果迭代器看不懂可以看这一篇【C++】C++中的vector-CSDN博客,里面详细介绍了)

#include <iostream>
#include <list>
using namespace std;
int main()
{
	//
	list<int> l1; // 构造空的l1
	list<int> l2(4, 100); // l2中放4个值为100的元素
	list<int> l3(l2.begin(), l2.end()); // 用l2的[begin(), end())左闭右开的区间构造l3
	list<int> l4(l3); // 用l3拷贝构造l4
	// 以数组为迭代器区间构造l5
	int array[] = { 16,2,77,29 };
	std::list<int> l5(array, array + sizeof(array) / sizeof(int));
	// 用迭代器方式打印l5中的元素
	for (std::list<int>::iterator it = l5.begin(); it != l5.end(); it++)
		std::cout << *it << " ";
	std::cout << endl;

	// C++11范围for的方式遍历
	for (auto& e : l5)
		std::cout << e << " ";

	std::cout << endl;
	return 0;
}

其实我们可以看出来,list这个类和之前的使用类的方法是基本一致的,不过他需要一个<int>来确定这个序列容器的类型,比如int,char....,就是list<int>可以当成一个整体,和vector很像。

list iterator的使用

         此处,大家可暂时将迭代器理解成一个指针,该指针指向list中的某个节点
函数声明

接口说明

begin end

获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置 的iterator/const_iterator

rbegin + rend

获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的 reverse_iterator

 PS:

1. begin end 为正向迭代器,对迭代器执行 ++ 操作,迭代器向后移动
2. rbegin(end) rend(begin) 为反向迭代器,对迭代器执行 ++ 操作,迭代器向前移动
上代码:
#include <iostream>
#include <list>
using namespace std;

void print_list(const list<int>& l)
{
	// 注意这里调用的是list的 begin() const,返回list的const_iterator对象
	// 保护数据通过将l声明为常量引用,我们保证了在print_list函数内部无法修改列表l的内容。
	// 这意味着无法添加、删除或修改列表中的任何元素。这是一种良好的编程实践,
	// 特别是当函数的目的仅仅是读取数据而不修改数据时。
	for (list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
	{
		cout << *it << " ";
		//如果不同const 就通过
		//*it = 10; 编译不通过
	}

	cout << endl;
}
int main()
{
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	// 使用正向迭代器正向list中的元素
	for (list<int>::iterator it = l.begin(); it != l.end(); ++it)
		cout << *it << " ";
	cout << endl;
	// 使用反向迭代器逆向打印list中的元素
	for (list<int>::reverse_iterator it = l.rbegin(); it != l.rend(); ++it)
		cout << *it << " ";
	cout << endl;
	return 0;
}

常用的成员方法

list capacity

函数声明

接口说明

empty
检测 list 是否为空,是返回 true ,否则返回 false
size
返回 list 中有效节点的个数

列表元素访问

函数声明

接口说明

empty
检测 list 是否为空,是返回 true ,否则返回 false
size
返回 list 中有效节点的个数

 list modifiers

函数声明
接口说明
push_frontlist首元素前插入值为val的元素
pop_front删除list中第一个元素
push_backlist尾部插入值为val的元素
pop_back删除list中最后一个元素
insertlist position 位置中插入值为val的元素
erase 删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素
上代码看实现:
#include <iostream>
#include <list>
#include <vector>
using namespace std;
void PrintList(list<int>& l)
{
	for (auto& e : l)
		cout << e << " ";
	cout << endl;
}
//===============================================================
// push_back/pop_back/push_front/pop_front
void TestList1()
{
	cout << "TestList1()" << endl;
	int array[] = { 1, 2, 3 };
	list<int> L(array, array + sizeof(array) / sizeof(array[0]));
	// 在list的尾部插入4,头部插入0
	L.push_back(4);
	L.push_front(0);
	PrintList(L);
	// 删除list尾部节点和头部节点
	L.pop_back();
	L.pop_front();
	PrintList(L);
}
//================================================================
// insert /erase 
void TestList2()
{
	cout << "TestList2()" << endl;
	int array1[] = { 1, 2, 3 };
	list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));
	// 获取链表中第二个节点
	auto pos = ++L.begin();
	cout << *pos << endl;
	// 在pos前插入值为4的元素
	L.insert(pos, 4);
	PrintList(L);
	// 在pos前插入5个值为5的元素
	L.insert(pos, 5, 5);
	PrintList(L);
	// 在pos前插入[v.begin(), v.end)区间中的元素
	vector<int> v {7, 8, 9 };
	L.insert(pos, v.begin(), v.end());
	PrintList(L);
	// 删除pos位置上的元素
	L.erase(pos);
	PrintList(L);
	// 删除list中[begin, end)区间中的元素,即删除list中的所有元素
	L.erase(L.begin(), L.end());
	PrintList(L);
}
// resize/swap/clear
void TestList3()
{
	cout << "TestList3()" << endl;
	// 用数组来构造list
	int array1[] = { 1, 2, 3 };
	list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));
	PrintList(l1);
	// 交换l1和l2中的元素
	list<int> l2;
	l1.swap(l2);
	PrintList(l1);
	PrintList(l2);
//使用resize将l2的大小先增加到5个元素,所有新添加的元素都将被赋值为99
	l2.resize(5, 99);
	PrintList(l2);
	// 将l2中的元素清空
	l2.clear();
	cout << l2.size() << endl;
}

int main()
{
	TestList1();
	TestList2();
	TestList3();
	return 0;
}

        好了,目前通过上面这一段精简的代码,我们把常用的成员方法基本解决了,但是list的成员方法实在太多,很多操作都是很特殊,不常见的,但是如果刚好需要又非常方便,所以就是可以在需要的时候查官方文档。

list的迭代器失效

在之前我们学习过vector的迭代器会有失效的情况,原因很简单,指针失效了,那么list会不会有这种情况呢?答案是有的,前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。所以影响相对vector来说比较小。

理解了吗?两段代码来检测一下大家

#include <iostream>
#include <list>
using namespace std;

void TestListIterator1()
{
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	auto it = l.begin();
	while (it != l.end())
	{
			l.erase(it);
		++it;
	}
}

void TestListIterator2()
{
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	auto it = l.begin();
	while (it != l.end())
	{
		l.erase(it++); // it = l.erase(it);
	}
}

int main()
{
	TestListIterator1();
	TestListIterator2();
	return 0;
}

是 TestListIterator1 出错 还是 TestListIterator2 出错?

如果你一眼就看出了,那么恭喜你,你掌握了。

其实很简单,第一个当调用erase(it)后,it被删除,使得it失效。尝试在失效的迭代器上进行操作(比如递增++it)是未定义行为。

      第二个,l.erase(it++):这里使用了“后置递增”运算符,它创建了it的一个副本,然后将副本传递给erase方法。erase删除了当前迭代器指向的元素,然后it被递增,指向下一个元素。因为it在递增前已经复制给erase,所以即使在删除当前元素后,递增操作是在一个新的、未被修改的迭代器上进行的,这保证了迭代器的有效性。或者可以这样写,等价的it = l.erase(it);erase函数返回下一个有效的迭代器,然后将其赋值给it。这样,it始终保持有效,且指向当前元素的下一个元素。

三、结语

到此为止,我们已经把list的基本使用方法学习结束了,list的成员方法十分丰富,这篇文章就是介绍了常用的,让大家基本会使用,目前你也可以用这种双向列表来实现一些复杂的算法,我在下面了可以给大家写一个。等我有时间再出一篇,模拟实现list的blog,理解他的底层实现,有缘再见,朋友!

实现的经典算法

约瑟夫环问题(Josephus Problem)。这个问题的一个版本可以描述如下:N个人围成一圈,从第一个人开始报数,每报到M时,该人被淘汰,接着从下一个人开始继续报数,直到所有人都被淘汰。任务是按顺序输出被淘汰人的编号。

#include <iostream>
#include <list>
using namespace std;

void JosephusProblem(int N, int M) {
    // 初始化人员列表,编号从1到N
    list<int> people;
    for (int i = 1; i <= N; ++i) {
        people.push_back(i);
    }

    auto it = people.begin(); // 迭代器指向第一个人
    while (!people.empty()) {
        // 模拟报数,M-1次移动迭代器(因为从当前人开始报数)
        for (int count = 1; count < M; ++count) {
            ++it;
            // 如果迭代器超过了末尾,重新从头开始
            if (it == people.end()) {
                it = people.begin();
            }
        }

        // 报到M,移除当前人,并输出编号
        cout << *it << " ";
        it = people.erase(it); // erase返回下一个元素的迭代器
        
        // 如果列表不为空,但迭代器已经到达末尾,需要重新指向开头
        if (it == people.end() && !people.empty()) {
            it = people.begin();
        }
    }
    cout << endl;
}

int main() {
    int N = 7; // 人数
    int M = 3; // 报数淘汰
    JosephusProblem(N, M);
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1574447.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IO流【带有缓冲区的字节输入、输出流;字符输入、输出流 转换流】

day35 学习注意事项 按照流的发展历史去学习注意流与流之间的继承关系举一反三 IO流 继day36 字节流继承图 字节流 应用场景&#xff1a;操作二进制数据&#xff08;音频、视频、图片&#xff09; abstract class InputStream – 字节输入流的基类&#xff08;抽象类&#xff0…

1、认识MySQL存储引擎吗?

目录 1、MySQL存储引擎有哪些&#xff1f; 2、默认的存储引擎是哪个&#xff1f; 3、InnoDB和MyISAM有什么区别吗&#xff1f; 3.1、关于事务 3.2、关于行级锁 3.3、关于外键支持 3.4、关于是否支持MVCC 3.5、关于数据安全恢复 3.6、关于索引 3.7、关于性能 4、如何…

项目经理想提升,可不止PMP这一个证书!

软考 系统集成项目管理工程师 信息系统项目管理师 中高项知识体系 软考价值&#xff1a; 软考的价值体现在多个方面&#xff1a; 在评职称方面&#xff0c;软考可以为个人提供北京工作居住证、一线城市积分落户等方面的支持&#xff0c;有利于个人在工作和生活中的稳定和发…

Java Netty个人对个人私聊demo

一、demo要求 1&#xff09;编写一个Netty个人对个人聊天系统&#xff0c;实现服务器端和客户端之间的数据简单通讯&#xff08;非阻塞&#xff09; 2&#xff09;实现单人对单人聊 3&#xff09;服务器端&#xff1a;可以监测用户上线&#xff0c;离线&#xff0c;并实现消…

【新手上路】C#联合Halcon第一个demo搭建

前言 学习Halcon目的是能够利用C#封装成一个视觉的上位机应用配合机器人或者过程控制来提高生产的效率&#xff0c;尤其是在检测外观和定位方面的应用。现在我们就来搭建第一个demo。让他们能够跑起来&#xff01; Halcon方面 打开Halcon软件&#xff0c;然后先随便写一个代…

ADW310 导轨式单相无线计量仪表-安科瑞黄安南

ADW310 无线计量仪表主要用于计量低压网络的有功电能&#xff0c;具有体积小、精度高、功能丰富等优点&#xff0c;并且可 选通讯方式多&#xff0c;可支持 RS485 通讯和 Lora、4G 等无线通讯方式&#xff0c;增加了外置互感器的电流采样模式&#xff0c;从而方便 用户在不同场…

uniapp使用npm命令引入font-awesome图标库最新版本

uniapp使用npm命令引入font-awesome图标库最新版本 图标库网址&#xff1a;https://fontawesome.com/search?qtools&or 命令行&#xff1a; 引入 npm i fortawesome/fontawesome-free 查看版本 npm list fortawesome在main.js文件中&#xff1a; import fortawesome/fo…

想在小红书写出数据分析类的爆文?带你分析爆文的写作思路

一、小红书运营分析背景介绍 在如今社交媒体的浪潮中&#xff0c;小红书、抖音、知乎等平台的流量如同滚滚长江&#xff0c;吸引了无数公司和品牌前来淘金。对于想要推广公司的产品和主营业务而言&#xff0c;如何在这些平台上脱颖而出&#xff0c;成为了一大难题。 数据分析&a…

Java文件流操作

一、文件创建和删除 public static void main(String[] args) throws IOException {File file new File("..\\hello-world.txt");//..表示在上机目录下创建hello-world.txtSystem.out.println(file.getPath());//返回当前相对路径System.out.println(file.getCanoni…

小型案例(acl,nat,dns,dhcp,静态路由)

实验目录&#xff1a;内网互通&#xff0c;pc不可以访问外网&#xff0c;server2可以通过外网访问&#xff08;nat技术&#xff09;&#xff0c;pc2&#xff0c;和pc3可以访问外网 拓扑图如下 配置信息如图&#xff0c;pc1~3 和server2 对应vlan分别是10&#xff0c;20&#…

Matlab 修改图例顺序

对于使用 .m 文件绘制的图片&#xff0c;可以修改程序中图例的顺序来改变图片的图例。如果图片所对应的 .fig 文件已经存在&#xff0c;而且不便修改源程序&#xff0c;则可以通过如下方式来修改图例&#xff1a; step 1: 打开fig文件&#xff0c;然后点击绘图浏览器 step 2&…

Qt实现无边框圆角窗口

我们在使用QDialog的时候许多场景下都不需要默认的标题栏&#xff0c;这时候我们需要设置他的标志位。 this->setWindowFlags(Qt::FramelessWindowHint);由于现代的窗口风格&#xff0c;我们一般会设置窗口为圆角边框的样式&#xff0c;我们可以使用qss的方式来进行设置。 …

WebAPI(一)之DOM操作元素属性和定时器

webAPI之DOM操作元素属性和定时器 介绍概念DOM 树DOM 节点document 获取DOM对象操作元素内容操作元素属性常用属性修改控制样式属性操作表单元素属性自定义属性 间歇函数今日单词 了解 DOM 的结构并掌握其基本的操作&#xff0c;体验 DOM 的在开发中的作用 知道 ECMAScript 与 …

鱼骨图功能实现

dom: <div class="module-content"><div class="title"><span>[</span><p>鱼骨图</p><span>]</span></div><div class="line-mian"></div><div :ref="module + i&q…

Francek Chen 的128天创作纪念日

目录 Francek Chen 的128天创作纪念日机缘收获日常成就憧憬 Francek Chen 的128天创作纪念日 Francek Chen 的个人主页 机缘 不知不觉的加入CSDN已有两年时间了&#xff0c;最初我第一次接触CSDN技术社区是在2022年4月的时候&#xff0c;通过学长给我们推荐了几个IT社区平台&a…

Redis数据库——主从、哨兵、群集

目录 前言 一、主从复制 1.基本原理 2.作用 3.流程 4.搭建主动复制 4.1环境准备 4.2修改主服务器配置 4.3从服务器配置&#xff08;Slave1和Slave2&#xff09; 4.4查看主从复制信息 4.5验证主从复制 二、哨兵模式——Sentinel 1.定义 2.原理 3.作用 4.组成 5.…

数字逻辑分析仪初体验

为啥会用到这玩意儿&#xff0c;要从一个荒诞的需求开始。想在市面上找一款特别低空飞行的监控&#xff0c;而且不想它一直开着监控&#xff0c;最好是我在外面远程指挥它起飞&#xff0c;飞去厨房&#xff0c;飞去洗手间&#xff0c;甚至飞去阳台&#xff0c;查看水龙头情况啊…

【力扣白嫖日记】1435.制作会话柱状图

前言 练习sql语句&#xff0c;所有题目来自于力扣&#xff08;https://leetcode.cn/problemset/database/&#xff09;的免费数据库练习题。 今日题目&#xff1a; 1435.制作会话柱状图 表&#xff1a;Sessions 列名类型session_idintdurationint session_id 是该表主键,d…

技术驱动下的同城O2O发展:跑腿配送APP开发教学

在同城生活服务领域&#xff0c;跑腿配送APP的出现与发展&#xff0c;为人们的日常生活提供了极大的便利。今天&#xff0c;小编将着重为大家讲解技术驱动下的同城O2O发展&#xff0c;并从跑腿配送APP的开发角度进行教学和解析。 一、同城O2O发展概述 在同城O2O模式中&#x…

摆动序列(力扣376)

文章目录 题目前知题解一、思路二、解题方法三、Code 总结 题目 Problem: 376. 摆动序列 如果连续数字之间的差严格地在正数和负数之间交替&#xff0c;则数字序列称为 摆动序列 。第一个差&#xff08;如果存在的话&#xff09;可能是正数或负数。仅有一个元素或者含两个不等元…