paddlepaddle模型转换onnx指导文档

news2025/1/16 8:17:53

一、检查本机cuda版本

1、右键找到invdia控制面板

在这里插入图片描述

2、找到系统信息

在这里插入图片描述

3、点开“组件”选项卡, 可以看到cuda版本,我们这里是cuda11.7

在这里插入图片描述

cuda驱动版本为516.94
在这里插入图片描述

二、安装paddlepaddle环境

1、获取pip安装命令 ,我们到paddlepaddle官网,找到cuda对应的安装命令

在这里插入图片描述

因为安装 完成paddlepaddle后还需要安装其他依赖,所以我们加上 -i 指定国内的pip源

python -m pip install -i   https://mirror.baidu.com/pypi/simple  paddlepaddle-gpu==2.5.1.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html

2、在anaconda中新建一个python3.9的环境

conda create -n py39_paddle python=3.9

3、切换conda环境到我们新建的环境

conda activate py39_paddle

4、运行pip安装命令

python -m pip install -i   https://mirror.baidu.com/pypi/simple  paddlepaddle-gpu==2.5.1.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html

Installing collected packages: paddle-bfloat, sniffio, protobuf, Pillow, numpy, idna, h11, exceptiongroup, decorator, certifi, astor, opt-einsum, anyio, httpcore, httpx, paddlepaddle-gpu
Successfully installed Pillow-10.0.1 anyio-4.0.0 astor-0.8.1 certifi-2023.7.22 decorator-5.1.1 exceptiongroup-1.1.3 h11-0.14.0 httpcore-0.18.0 httpx-0.25.0 idna-3.4 numpy-1.26.0 opt-einsum-3.3.0 paddle-bfloat-0.1.7 paddlepaddle-gpu-2.5.1.post117 protobuf-3.20.2 sniffio-1.3.0

安装成功!!

三、模型转换

1、安装转换工具paddle2onnx

python -m pip install -i   https://mirror.baidu.com/pypi/simple  paddle2onnx

2.训练模型

import paddle
from paddle.vision.transforms import Normalize

transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')
# 下载数据集并初始化 DataSet
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)

# 模型组网并初始化网络
lenet = paddle.vision.models.LeNet(num_classes=10)
model = paddle.Model(lenet)

# 模型训练的配置准备,准备损失函数,优化器和评价指标
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
              paddle.nn.CrossEntropyLoss(),
              paddle.metric.Accuracy())

# 模型训练
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
# 模型评估
model.evaluate(test_dataset, batch_size=64, verbose=1)

3.环境报错

在这里插入图片描述
报错内容: cudnn没有装!

4、安装cudnn,cudatookit,参考:cudnn安装指导

https://www.notion.so/3a4f57edc6e54e4eaa63ed86234cf533?pvs=25

5、训练成功!

在这里插入图片描述

6、模型转换

# export to ONNX
save_path = 'onnx.save/lenet1' # 需要保存的路径
x_spec = paddle.static.InputSpec([None, 1, 28, 28], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec ,InputSpec 支持动态的 shape。
paddle.onnx.export(lenet, save_path, input_spec=[x_spec], opset_version=14)

在这里插入图片描述
成功生成onnx文件

7、检查转换结果,没有问题

# 导入 ONNX 库
import onnx
# 载入 ONNX 模型
onnx_model = onnx.load("onnx.save/lenet1.onnx")
# 使用 ONNX 库检查 ONNX 模型是否合理
check = onnx.checker.check_model(onnx_model)
# 打印检查结果
print('check: ', check)
check:  None

四、模型精度测试

1、paddlepaddle模型推理

import onnxruntime
import numpy as np
img = np.random.randn(1, 1, 28, 28).astype(np.float32)
lenet.eval()
paddle_input = paddle.to_tensor(img) 
pad_output = lenet(paddle_input)

2、onnx模型推理

ort_session = onnxruntime.InferenceSession('onnx.save/lenet1.onnx',providers=['CPUExecutionProvider', 'CUDAExecutionProvider'])
model_inputs = ort_session.get_inputs()
ort_inputs = {model_inputs[0].name: img}
onnx_output = ort_session.run(['linear_11.tmp_1'], ort_inputs)[0]

### 3、检查推理 结果

paddle.max(pad_output-onnx_output)
Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=False,
       0.00000381)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1569559.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络原理 - HTTP / HTTPS(3)——http响应

目录 一、认识 “状态码”(status code) 常见的状态码 (1)200 OK (2)404 Not Found (3)403 ForBidden (4)405 Method Not Allowed (5&…

Unity框架,ET框架8.1版本的打包流程记录

目录 打包代码前置1.必须要安装Visusal Studio 2022的组件,如下图,必须都要进行安装,不然会在代码重构的时候报错,丢失SDK。Rider的版本必须2023及以上 步骤一、使用Rider编辑器打开项目后进行重构项目步骤二、使用HybirdCLR生成A…

openGauss学习笔记-256 openGauss性能调优-使用Plan Hint进行调优-优化器GUC参数的Hint

文章目录 openGauss学习笔记-256 openGauss性能调优-使用Plan Hint进行调优-优化器GUC参数的Hint256.1 功能描述256.2 语法格式256.3 参数说明 openGauss学习笔记-256 openGauss性能调优-使用Plan Hint进行调优-优化器GUC参数的Hint 256.1 功能描述 设置本次查询执行内生效的…

Flume 拦截器概念及自定义拦截器的运用

文章目录 Flume 拦截器拦截器的作用拦截器运用1.创建项目2.实现拦截器接口3.编写事件处理逻辑4.拦截器构建5.打包与上传6.编写配置文件7.测试运行 Flume 拦截器 在 Flume 中,拦截器(Interceptors)是一种可以在事件传输过程中拦截、处理和修改…

【Qt 学习笔记】Qt的坐标体系

博客主页:Duck Bro 博客主页系列专栏:Qt 专栏关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ Qt的坐标体系 文章编号:Qt 学习笔记 / 11 文章目录 Qt的坐…

ML.NET(二) 使用机器学习预测表情分析

这个例子使用模型进行表情分析: 准备数据: happy,sad 等; using Common; using ConsoleApp2; using Microsoft.ML; using Microsoft.ML.Data; using System.Diagnostics; using static Microsoft.ML.Transforms.ValueToKeyMappingEstimator;…

[C#]OpenCvSharp实现直方图均衡化全局直方图局部直方图自适应直方图

【什么是直方图均衡化】 直方图均衡化是一种简单而有效的图像处理技术,它旨在改善图像的视觉效果,使图像变得更加清晰和对比度更高。其核心原理是将原始图像的灰度直方图从可能较为集中的某个灰度区间转变为在全部灰度范围内的均匀分布。通过这种方法&a…

【接口】HTTP(1)|请求|响应

1、概念 Hyper Text Transfer Protocol(超文本传输协议)用于从万维网(就是www)服务器传输超文本到本地浏览器的传送协议。 HTTP协议是基于TCP的应用层协议,它不关心数据传输的细节,主要是用来规定客户端和…

【Linux】第二个小程序--简易shell

请看上面的shell,其本质就是一个字符串,我们知道bash本质上就是一个进程,只不过命令行就是一个输出的字符串, 我们输入的命令“ls -a -l”实际上是我们在输入行输入的字符串,所以,如果我们想要做一个简易的…

vscode开发ESP32问题记录

vscode 开发ESP32问题记录 1. 解决vscode中的波浪线警告 1. 解决vscode中的波浪线警告 参考链接:https://blog.csdn.net/fucingman/article/details/134404485 首先可以通过vscode 中的IDF插件生成模板工程,这样会自动创建.vscode文件夹中的一些json配…

Jackson @JsonUnwrapped注解扁平化 序列化反序列化数据

参考资料 Jackson 2.x 系列【7】注解大全篇三JsonUnwrapped 以扁平的数据结构序列化/反序列化属性Jackson扁平化处理对象 目录 一. 前期准备1.1 前端1.2 实体类1.3 Controller层 二. 扁平化序列反序列化数据2.1 序列化数据2.2 反序列化数据 三. 前缀后缀处理属性同名四. Map数…

RabbitMQ3.7.8集群分区(脑裂现象)模拟及恢复处置全场景测试

测试环境准备: MQ服务器集群地址,版本号为3.7.8: 管理控制台地址:http://173.101.4.6:15672/#/queues 集群状态 rabbitmqctl cluster_status 集群操作相关命令: 创建一个RabbitMQ集群涉及到如下步骤: 安装RabbitMQ: 在每台要在集…

【Linux】Ubuntu 文件权限管理

Linux 系统对文件的权限有着严格的控制,用于如果相对某个文件执行某种操作,必须具有对应的权限方可执行成功,这也是Linux有别于Windows的机制,也是基于这个权限机制,Linux可以有效防止病毒自我运行。因为运行的条件是必…

软件架构复用

1.软件架构复用的定义及分类 软件产品线是指一组软件密集型系统,它们共享一个公共的、可管理的特性集,满足某个特定市场或任务的具体需要,是以规定的方式用公共的核心资产集成开发出来的。即围绕核心资产库进行管理、复用、集成新的系统。核心…

【随笔】Git 高级篇 -- 相对引用2(十三)

💌 所属专栏:【Git】 😀 作  者:我是夜阑的狗🐶 🚀 个人简介:一个正在努力学技术的CV工程师,专注基础和实战分享 ,欢迎咨询! 💖 欢迎大…

HTML:框架

案例&#xff1a; <frameset cols"5%,*" ><frame src"left_frame.html"><frame src"right_frame.html"> </frameset> 一、<frameset>标签 <frameset>标签&#xff1a;称为框架标记&#xff0c;将一个HTML…

Linux 学习之路 - 进程篇 - PCB介绍1-标识符

目录 一、基础的命令 <1> ps axj 命令 <2> top 命令 <3> proc 目录 二、进程的标识符 <1>范围 <2>如何获取标识符 <3>bash进程 三、创建进程 一、基础的命令 前面介绍了那么多&#xff0c;但是我们没有观察到进程相关状态&#x…

什么是智慧公厕?智慧旅游下的智慧公厕功能和特点

智慧旅游下的智慧公厕功能和特点&#xff1f;智慧旅游是景区、公园、游乐场、文化场馆等领域的一种信息化解决方案&#xff0c;智慧公厕是智慧旅游极为重要的一部分&#xff0c;能大大提升游客满意度。智慧公厕采用物联网、互联网、大数据、云计算等技术&#xff0c;实现旅游景…

深入浅出 -- 系统架构之微服务架构选型参考图

技术选型架构图 是一个用于展示项目中所采用的各种技术和组件之间关系的图表。 它通常包括以下几个部分&#xff1a; 1. 项目名称和描述&#xff1a;简要介绍项目的背景和目标。 2. 技术栈&#xff1a;列出项目中使用的主要技术和工具&#xff0c;如编程语言、框架、数据库…

Unity开发一个FPS游戏之三

在前面的两篇博客中&#xff0c;我已实现了一个FPS游戏的大部分功能&#xff0c;包括了第一人称的主角运动控制&#xff0c;武器射击以及敌人的智能行为。这里我将继续完善这个游戏&#xff0c;包括以下几个方面&#xff1a; 增加一个真实的游戏场景&#xff0c;模拟一个废弃的…