ML.NET(二) 使用机器学习预测表情分析

news2025/1/16 8:00:48

 这个例子使用模型进行表情分析:

准备数据: happy,sad 等;

using Common;
using ConsoleApp2;
using Microsoft.ML;
using Microsoft.ML.Data;
using System.Diagnostics;
using static Microsoft.ML.Transforms.ValueToKeyMappingEstimator;


/*
 * 训练一个Happy 和Sad 等表情的模型并使用预测  图像分类器(Image Classification) 
 *  ***********************预测不是很准,数据集找对应人种数据可以尝试亚洲,欧美分开
 */

var projectDirectory = Path.GetFullPath(Path.Combine(AppContext.BaseDirectory, "./"));
var workspaceRelativePath = Path.Combine(projectDirectory, "workspace");
var assetsRelativePath = Path.Combine(projectDirectory, "assets");


string outputMlNetModelFilePath = "model.zip";//Path.Combine("", "outputs", "imageClassifier.zip");
string imagesFolderPathForPredictions = Path.Combine("", "inputs", "test-images");
// 设置ML.NET环境
var mlContext = new MLContext();

// 加载数据


IEnumerable<ImageData> images = LoadImagesFromDirectory(folder: assetsRelativePath, useFolderNameAsLabel: true);
IDataView fullImagesDataset = mlContext.Data.LoadFromEnumerable(images);
IDataView shuffledFullImageFilePathsDataset = mlContext.Data.ShuffleRows(fullImagesDataset);

// 3. Load Images with in-memory type within the IDataView and Transform Labels to Keys (Categorical)
IDataView shuffledFullImagesDataset = mlContext.Transforms.Conversion.
        MapValueToKey(outputColumnName: "LabelAsKey", inputColumnName: "Label", keyOrdinality: KeyOrdinality.ByValue)
    .Append(mlContext.Transforms.LoadRawImageBytes(
                                    outputColumnName: "Image",
                                    imageFolder: assetsRelativePath,
                                    inputColumnName: "ImagePath"))
    .Fit(shuffledFullImageFilePathsDataset)
    .Transform(shuffledFullImageFilePathsDataset);


// 4. Split the data 80:20 into train and test sets, train and evaluate.
var trainTestData = mlContext.Data.TrainTestSplit(shuffledFullImagesDataset, testFraction: 0.2);
IDataView trainDataView = trainTestData.TrainSet;
IDataView testDataView = trainTestData.TestSet;

// 5. Define the model's training pipeline using DNN default values
//
var pipeline = mlContext.MulticlassClassification.Trainers
        .ImageClassification(featureColumnName: "Image",
                             labelColumnName: "LabelAsKey",
                             validationSet: testDataView)
    .Append(mlContext.Transforms.Conversion.MapKeyToValue(outputColumnName: "PredictedLabel",
                                                          inputColumnName: "PredictedLabel"));
// Measuring training time
var watch = Stopwatch.StartNew();
Console.WriteLine($"--------------------开始训练-------------------------------");

//6. Train
ITransformer trainedModel = pipeline.Fit(trainDataView);


watch.Stop();
var elapsedMs = watch.ElapsedMilliseconds;

Console.WriteLine($"--------------------训练用时: {elapsedMs / 1000} seconds --------------------");

// 7. Get the quality metrics (accuracy, etc.)
EvaluateModel(mlContext, testDataView, trainedModel);

 8. Save the model to assets/outputs (You get ML.NET .zip model file and TensorFlow .pb model file)
mlContext.Model.Save(trainedModel, trainDataView.Schema, outputMlNetModelFilePath); //outputMlNetModelFilePath
Console.WriteLine($"Model saved to: {outputMlNetModelFilePath}");

 9. Try a single prediction simulating an end-user app
TrySinglePrediction(imagesFolderPathForPredictions, mlContext, trainedModel);


static IEnumerable<ImageData> LoadImagesFromDirectory(
   string folder,
   bool useFolderNameAsLabel = true)
   => FileUtils.LoadImagesFromDirectory(folder, useFolderNameAsLabel)
       .Select(x => new ImageData(x.imagePath, x.label));

static void EvaluateModel(MLContext mlContext, IDataView testDataset, ITransformer trainedModel)
{
    Console.WriteLine("Making predictions in bulk for evaluating model's quality...");

    // Measuring time
    var watch = Stopwatch.StartNew();

    var predictionsDataView = trainedModel.Transform(testDataset);

    var metrics = mlContext.MulticlassClassification.Evaluate(predictionsDataView, labelColumnName: "LabelAsKey", predictedLabelColumnName: "PredictedLabel");
    ConsoleHelper.PrintMultiClassClassificationMetrics("TensorFlow DNN Transfer Learning", metrics);

    watch.Stop();
    var elapsed2Ms = watch.ElapsedMilliseconds;

    Console.WriteLine($"Predicting and Evaluation took: {elapsed2Ms / 1000} seconds");
}
static void TrySinglePrediction(string imagesFolderPathForPredictions, MLContext mlContext, ITransformer trainedModel)
{
    // Create prediction function to try one prediction
    var predictionEngine = mlContext.Model
        .CreatePredictionEngine<InMemoryImageData, ImagePrediction>(trainedModel);

    var testImages = FileUtils.LoadInMemoryImagesFromDirectory(
        imagesFolderPathForPredictions, false);

    var imageToPredict = testImages.Last
        ();

    var prediction = predictionEngine.Predict(imageToPredict);

    Console.WriteLine(
        $"Image Filename : [{imageToPredict.ImageFileName}], " +
        $"Scores : [{string.Join(",", prediction.Score)}], " +
        $"Predicted Label : {prediction.PredictedLabel}");
}
// 定义数据结构
class ImageData
{
    public ImageData(string imagePath, string label)
    {
        ImagePath = imagePath;
        Label = label;
    }

    public readonly string ImagePath;

    public readonly string Label;
}

class ModelInput
{
    public byte[] Image { get; set; }

    public UInt32 LabelAsKey { get; set; }

    public string ImagePath { get; set; }

    public string Label { get; set; }
}
class ModelOutput
{
    public string ImagePath { get; set; }

    public string Label { get; set; }

    public string PredictedLabel { get; set; }
}
public class ImagePrediction
{
    [ColumnName("Score")]
    public float[] Score;

    [ColumnName("PredictedLabel")]
    public string PredictedLabel;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1569547.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[C#]OpenCvSharp实现直方图均衡化全局直方图局部直方图自适应直方图

【什么是直方图均衡化】 直方图均衡化是一种简单而有效的图像处理技术&#xff0c;它旨在改善图像的视觉效果&#xff0c;使图像变得更加清晰和对比度更高。其核心原理是将原始图像的灰度直方图从可能较为集中的某个灰度区间转变为在全部灰度范围内的均匀分布。通过这种方法&a…

【接口】HTTP(1)|请求|响应

1、概念 Hyper Text Transfer Protocol&#xff08;超文本传输协议&#xff09;用于从万维网&#xff08;就是www&#xff09;服务器传输超文本到本地浏览器的传送协议。 HTTP协议是基于TCP的应用层协议&#xff0c;它不关心数据传输的细节&#xff0c;主要是用来规定客户端和…

【Linux】第二个小程序--简易shell

请看上面的shell&#xff0c;其本质就是一个字符串&#xff0c;我们知道bash本质上就是一个进程&#xff0c;只不过命令行就是一个输出的字符串&#xff0c; 我们输入的命令“ls -a -l”实际上是我们在输入行输入的字符串&#xff0c;所以&#xff0c;如果我们想要做一个简易的…

vscode开发ESP32问题记录

vscode 开发ESP32问题记录 1. 解决vscode中的波浪线警告 1. 解决vscode中的波浪线警告 参考链接&#xff1a;https://blog.csdn.net/fucingman/article/details/134404485 首先可以通过vscode 中的IDF插件生成模板工程&#xff0c;这样会自动创建.vscode文件夹中的一些json配…

Jackson @JsonUnwrapped注解扁平化 序列化反序列化数据

参考资料 Jackson 2.x 系列【7】注解大全篇三JsonUnwrapped 以扁平的数据结构序列化/反序列化属性Jackson扁平化处理对象 目录 一. 前期准备1.1 前端1.2 实体类1.3 Controller层 二. 扁平化序列反序列化数据2.1 序列化数据2.2 反序列化数据 三. 前缀后缀处理属性同名四. Map数…

RabbitMQ3.7.8集群分区(脑裂现象)模拟及恢复处置全场景测试

测试环境准备: MQ服务器集群地址&#xff0c;版本号为3.7.8&#xff1a; 管理控制台地址:http://173.101.4.6:15672/#/queues 集群状态 rabbitmqctl cluster_status 集群操作相关命令: 创建一个RabbitMQ集群涉及到如下步骤&#xff1a; 安装RabbitMQ&#xff1a; 在每台要在集…

【Linux】Ubuntu 文件权限管理

Linux 系统对文件的权限有着严格的控制&#xff0c;用于如果相对某个文件执行某种操作&#xff0c;必须具有对应的权限方可执行成功&#xff0c;这也是Linux有别于Windows的机制&#xff0c;也是基于这个权限机制&#xff0c;Linux可以有效防止病毒自我运行。因为运行的条件是必…

软件架构复用

1.软件架构复用的定义及分类 软件产品线是指一组软件密集型系统&#xff0c;它们共享一个公共的、可管理的特性集&#xff0c;满足某个特定市场或任务的具体需要&#xff0c;是以规定的方式用公共的核心资产集成开发出来的。即围绕核心资产库进行管理、复用、集成新的系统。核心…

【随笔】Git 高级篇 -- 相对引用2(十三)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…

HTML:框架

案例&#xff1a; <frameset cols"5%,*" ><frame src"left_frame.html"><frame src"right_frame.html"> </frameset> 一、<frameset>标签 <frameset>标签&#xff1a;称为框架标记&#xff0c;将一个HTML…

Linux 学习之路 - 进程篇 - PCB介绍1-标识符

目录 一、基础的命令 <1> ps axj 命令 <2> top 命令 <3> proc 目录 二、进程的标识符 <1>范围 <2>如何获取标识符 <3>bash进程 三、创建进程 一、基础的命令 前面介绍了那么多&#xff0c;但是我们没有观察到进程相关状态&#x…

什么是智慧公厕?智慧旅游下的智慧公厕功能和特点

智慧旅游下的智慧公厕功能和特点&#xff1f;智慧旅游是景区、公园、游乐场、文化场馆等领域的一种信息化解决方案&#xff0c;智慧公厕是智慧旅游极为重要的一部分&#xff0c;能大大提升游客满意度。智慧公厕采用物联网、互联网、大数据、云计算等技术&#xff0c;实现旅游景…

深入浅出 -- 系统架构之微服务架构选型参考图

技术选型架构图 是一个用于展示项目中所采用的各种技术和组件之间关系的图表。 它通常包括以下几个部分&#xff1a; 1. 项目名称和描述&#xff1a;简要介绍项目的背景和目标。 2. 技术栈&#xff1a;列出项目中使用的主要技术和工具&#xff0c;如编程语言、框架、数据库…

Unity开发一个FPS游戏之三

在前面的两篇博客中&#xff0c;我已实现了一个FPS游戏的大部分功能&#xff0c;包括了第一人称的主角运动控制&#xff0c;武器射击以及敌人的智能行为。这里我将继续完善这个游戏&#xff0c;包括以下几个方面&#xff1a; 增加一个真实的游戏场景&#xff0c;模拟一个废弃的…

[C#]OpenCvSharp利用MatchTemplate实现多目标匹配

【效果展示】 原图 模板图 匹配结果&#xff1a; 【实现部分代码】 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using…

Flutter仿Boss-4.短信验证码界面

效果 简述 在移动应用开发中&#xff0c;处理短信验证码是确保用户身份验证和安全性的重要步骤。本文将介绍如何使用Flutter构建一个短信验证码界面&#xff0c;让用户输入通过短信发送到他们手机的四位验证码。 依赖项 在这个项目中&#xff0c;我们将使用以下依赖项&#…

关于Tomcat双击startup.bat 闪退的解决⽅法

详解Tomcat双击startup.bat 闪退的解决⽅法 作为⼀个刚学习Tomcat的程序猿来说&#xff0c;这是会经常出现的错误。 1.环境变量问题 1.1 ⾸先需要确认java环境是否配置正确&#xff0c;jdk是否安装正确 winR打开cmd&#xff0c;输⼊java 或者 javac 出现下图所⽰就说明jdk配置正…

单元测试 mockito(二)

1.返回指定值 2.void返回值指定插桩 3.插桩的两种方式 when(obj.someMethod()).thenXxx():其中obj可以是mock对象 doXxx().wien(obj).someMethod():其中obj可以是mock/spy对象 spy对象在没有插桩时是调用真实方法的,写在when中会导致先执行一次原方法,达不到mock的目的&#x…

走进车厂 | 移远通信以前沿车载技术,照亮智能网联汽车产业创新发展之路

无钥匙自动解锁方便快捷、实时路况导航精准高效、语音指令轻松控制车辆、车载娱乐系统丰富多样……随着智能化、数字化浪潮的不断推进&#xff0c;现如今的汽车出行焕然一新。 正如我们所见&#xff0c;汽车产业正在经历前所未有的变革。物联网、车联网等前沿技术的发展和应用&…

GDAL源码剖析(九)之GDAL体系架构

GDAL源码剖析&#xff08;九&#xff09;之GDAL体系架构_gdal 源码-CSDN博客 在GDAL库中包含栅格数据的读写&#xff0c;矢量数据的读写&#xff0c;以及栅格和矢量数据的相关算法。下面主要对GDAL中栅格数据和矢量数据的体系架构做一个简单的说明。本人英文很烂&#xff0c;有…