如何保持数据一致性

news2024/11/16 8:15:26

如何保持数据一致性

数据库和缓存(比如:redis)双写数据一致性问题,是一个跟开发语言无关的公共问题。尤其在高并发的场景下,这个问题变得更加严重。

问题描述:

1.在高并发的场景中,针对同一个用户的同一条数据,有两个写数据请求:a和b,它们同时请求到业务系统。如何保持缓存和数据库一致性问题。

2.在高并发的场景中,同一个用户的同一条数据,有一个读数据请求c,还有另一个写数据请求d(一个更新操作),同时请求到业务系统。如何保持缓存和数据库一致性问题。

通常情况下,我们使用缓存的主要目的是为了提升查询的性能。大多数情况下,我们是这样使用缓存的:

1.用户请求过来之后,先查缓存有没有数据,如果有则直接返回。

2.如果缓存没数据,再继续查数据库。

3.如果数据库有数据,则将查询出来的数据,放入缓存中,然后返回该数据。

4.如果数据库也没数据,则直接返回空。

这是缓存非常常见的用法。一眼看上去,好像没有啥问题。

但你忽略了一个非常重要的细节:如果数据库中的某条数据,放入缓存之后,又立马被更新了,那么该如何更新缓存呢?

不更新缓存行不行?

答:当然不行,如果不更新缓存,在很长的一段时间内(决定于缓存的过期时间),用户请求从缓存中获取到的都可能是旧值,而非数据库的最新值。这不是有数据不一致的问题?

那么,我们该如何更新缓存呢?

目前有以下4种方案:

1.先写缓存,再写数据库

2.先写数据库,再写缓存

3.先删缓存,再写数据库

4.先写数据库,再删缓存

接下来,我们详细说说这4种方案。

2. 先写缓存,再写数据库

对于更新缓存的方案,很多人第一个想到的可能是在写操作中直接更新缓存(写缓存),更直接明了。

那么,问题来了:在写操作中,到底是先写缓存,还是先写数据库呢?

我们在这里先聊聊先写缓存,再写数据库的情况,因为它的问题最严重。


某一个用户的每一次写操作,如果刚写完缓存,突然网络出现了异常,导致写数据库失败了。


其结果是缓存更新成了最新数据,但数据库没有,这样缓存中的数据不就变成脏数据了?如果此时该用户的查询请求,正好读取到该数据,就会出现问题,因为该数据在数据库中根本不存在,这个问题非常严重。

我们都知道,缓存的主要目的是把数据库的数据临时保存在内存,便于后续的查询,提升查询速度。

但如果某条数据,在数据库中都不存在,你缓存这种“假数据”又有啥意义呢?

因此,先写缓存,再写数据库的方案是不可取的,在实际工作中用得不多。

3. 先写数据库,再写缓存

既然上面的方案行不通,接下来,聊聊先写数据库,再写缓存的方案,该方案在低并发编程中有人在用(我猜的)。

用户的写操作,先写数据库,再写缓存,可以避免之前“假数据”的问题。但它却带来了新的问题。

什么问题呢?

3.1 写缓存失败了

如果把写数据库和写缓存操作,放在同一个事务当中,当写缓存失败了,我们可以把写入数据库的数据进行回滚。

如果是并发量比较小,对接口性能要求不太高的系统,可以这么玩。

但如果在高并发的业务场景中,写数据库和写缓存,都属于远程操作。为了防止出现大事务,造成的死锁问题,通常建议写数据库和写缓存不要放在同一个事务中。

也就是说在该方案中,如果写数据库成功了,但写缓存失败了,数据库中已写入的数据不会回滚。

这就会出现:数据库是新数据,而缓存是旧数据,两边数据不一致的情况。

3.2 高并发下的问题

假设在高并发的场景中,针对同一个用户的同一条数据,有两个写数据请求:a和b,它们同时请求到业务系统。

其中请求a获取的是旧数据,而请求b获取的是新数据

1.请求a先过来,刚写完了数据库。但由于网络原因,卡顿了一下,还没来得及写缓存。

2.这时候请求b过来了,先写了数据库。

3.接下来,请求b顺利写了缓存。

4.此时,请求a卡顿结束,也写了缓存。

很显然,在这个过程当中,请求b在缓存中的新数据,被请求a的旧数据覆盖了。

也就是说:在高并发场景中,如果多个线程同时执行先写数据库,再写缓存的操作,可能会出现数据库是新值,而缓存中是旧值,两边数据不一致的情况。

3.3 浪费系统资源

该方案还有一个比较大的问题就是:每个写操作,写完数据库,会马上写缓存,比较浪费系统资源。

为什么这么说呢?

你可以试想一下,如果写的缓存,并不是简单的数据内容,而是要经过非常复杂的计算得出的最终结果。这样每写一次缓存,都需要经过一次非常复杂的计算,不是非常浪费系统资源吗?

尤其是cpu和内存资源。

还有些业务场景比较特殊:写多读少。

如果在这类业务场景中,每个用的写操作,都需要写一次缓存,有点得不偿失。

由此可见,在高并发的场景中,先写数据库,再写缓存,这套方案问题挺多的,也不太建议使用。

如果你已经用了,赶紧看看踩坑了没?

4. 先删缓存,再写数据库

通过上面的内容我们得知,如果直接更新缓存的问题很多。

那么,为何我们不能换一种思路:不去直接更新缓存,而改为删除缓存呢?

删除缓存方案,同样有两种:

1.先删缓存,再写数据库

2.先写数据库,再删缓存

我们一起先看看:先删缓存,再写数据库的情况。

说白了,在用户的写操作中,先执行删除缓存操作,再去写数据库。这套方案,可以是可以,但也会有一样问题。

4.1 高并发下的问题

假设在高并发的场景中,同一个用户的同一条数据,有一个读数据请求c,还有另一个写数据请求d(一个更新操作),同时请求到业务系统。

1.请求d先过来,把缓存删除了。但由于网络原因,卡顿了一下,还没来得及写数据库。

2.这时请求c过来了,先查缓存发现没数据,再查数据库,有数据,但是旧值。

3.请求c将数据库中的旧值,更新到缓存中。

4.此时,请求d卡顿结束,把新值写入数据库。

在这个过程当中,请求d的新值并没有被请求c写入缓存,同样会导致缓存和数据库的数据不一致的情况。更正:图中步骤7写入旧值,步骤9要删掉。

那么,这种场景的数据不一致问题,能否解决呢?

4.2 缓存双删

在上面的业务场景中,一个读数据请求,一个写数据请求。当写数据请求把缓存删了之后,读数据请求,可能把当时从数据库查询出来的旧值,写入缓存当中。

有人说还不好办,请求d在写完数据库之后,把缓存重新删一次不就行了?这就是我们所说的缓存双删,即在写数据库之前删除一次,写完数据库后,再删除一次。

该方案有个非常关键的地方是:第二次删除缓存,并非立马就删,而是要在一定的时间间隔之后。

我们再重新回顾一下,高并发下一个读数据请求,一个写数据请求导致数据不一致的产生过程:

1.请求d先过来,把缓存删除了。但由于网络原因,卡顿了一下,还没来得及写数据库。

2.这时请求c过来了,先查缓存发现没数据,再查数据库,有数据,但是旧值。

3.请求c将数据库中的旧值,更新到缓存中。

4.此时,请求d卡顿结束,把新值写入数据库。

5.一段时间之后,比如:500ms,请求d将缓存删除。

这样来看确实可以解决缓存不一致问题。

那么,为什么一定要间隔一段时间之后,才能删除缓存呢?

请求d卡顿结束,把新值写入数据库后,请求c将数据库中的旧值,更新到缓存中。

此时,如果请求d删除太快,在请求c将数据库中的旧值更新到缓存之前,就已经把缓存删除了,这次删除就没任何意义。必须要在请求c更新缓存之后,再删除缓存,才能把旧值及时删除了。

所以需要在请求d中加一个时间间隔,确保请求c,或者类似于请求c的其他请求,如果在缓存中设置了旧值,最终都能够被请求d删除掉。

接下来,还有一个问题:如果第二次删除缓存时,删除失败了该怎么办?

这里先留点悬念,后面会详细说。

5. 先写数据库,再删缓存

从前面得知,先删缓存,再写数据库,在并发的情况下,也可能会出现缓存和数据库的数据不一致的情况。

那么,我们只能寄希望于最后的方案了。

接下来,我们重点看看先写数据库,再删缓存的方案。
在高并发的场景中,有一个读数据请求,有一个写数据请求,更新过程如下:

1.请求e先写数据库,由于网络原因卡顿了一下,没有来得及删除缓存。

2.请求f查询缓存,发现缓存中有数据,直接返回该数据。

3.请求e删除缓存。

在这个过程中,只有请求f读了一次旧数据,后来旧数据被请求e及时删除了,看起来问题不大。

但如果是读数据请求先过来呢?

1.请求f查询缓存,发现缓存中有数据,直接返回该数据。

2.请求e先写数据库。

3.请求e删除缓存。

这种情况看起来也没问题呀?

答:对的。

但就怕出现下面这种情况,即缓存自己失效了。

1.缓存过期时间到了,自动失效。

2.请求f查询缓存,发缓存中没有数据,查询数据库的旧值,但由于网络原因卡顿了,没有来得及更新缓存。

3.请求e先写数据库,接着删除了缓存。

4.请求f更新旧值到缓存中。

这时,缓存和数据库的数据同样出现不一致的情况了。

但这种情况还是比较少的,需要同时满足以下条件才可以:

1.缓存刚好自动失效。

2.请求f从数据库查出旧值,更新缓存的耗时,比请求e写数据库,并且删除缓存的还长。

我们都知道查询数据库的速度,一般比写数据库要快,更何况写完数据库,还要删除缓存。所以绝大多数情况下,写数据请求比读数据情况耗时更长。

由此可见,系统同时满足上述两个条件的概率非常小。

推荐大家使用先写数据库,再删缓存的方案,虽说不能100%避免数据不一致问题,但出现该问题的概率,相对于其他方案来说是最小的。

但在该方案中,如果删除缓存失败了该怎么办呢?

6. 删缓存失败怎么办?

其实先写数据库,再删缓存的方案,跟缓存双删的方案一样,有一个共同的风险点,即:如果缓存删除失败了,也会导致缓存和数据库的数据不一致。

那么,删除缓存失败怎么办呢?

答:需要加重试机制。

在接口中如果更新了数据库成功了,但更新缓存失败了,可以立刻重试3次。如果其中有任何一次成功,则直接返回成功。如果3次都失败了,则写入数据库,准备后续再处理。

当然,如果你在接口中直接同步重试,该接口并发量比较高的时候,可能有点影响接口性能。

这时,就需要改成异步重试了。

异步重试方式有很多种,比如:

1.每次都单独起一个线程,该线程专门做重试的工作。但如果在高并发的场景下,可能会创建太多的线程,导致系统OOM问题,不太建议使用。

2.将重试的任务交给线程池处理,但如果服务器重启,部分数据可能会丢失。

3.将重试数据写表,然后使用elastic-job等定时任务进行重试。

4.将重试的请求写入mq等消息中间件中,在mq的consumer中处理。

5.订阅mysql的binlog,在订阅者中,如果发现了更新数据请求,则删除相应的缓存。

7. 定时任务

使用定时任务重试的具体方案如下:

1.当用户操作写完数据库,但删除缓存失败了,需要将用户数据写入重试表中。

2.在定时任务中,异步读取重试表中的用户数据。重试表需要记录一个重试次数字段,初始值为0。然后重试5次,不断删除缓存,每重试一次该字段值+1。如果其中有任意一次成功了,则返回成功。如果重试了5次,还是失败,则我们需要在重试表中记录一个失败的状态,等待后续进一步处理。

3.在高并发场景中,定时任务推荐使用elastic-job。相对于xxl-job等定时任务,它可以分片处理,提升处理速度。同时每片的间隔可以设置成:1,2,3,5,7秒等。

使用定时任务重试的话,有个缺点就是实时性没那么高,对于实时性要求特别高的业务场景,该方案不太适用。但是对于一般场景,还是可以用一用的。

但它有一个很大的优点,即数据是落库的,不会丢数据。

8. mq

在高并发的业务场景中,mq(消息队列)是必不可少的技术之一。它不仅可以异步解耦,还能削峰填谷。对保证系统的稳定性是非常有意义的。

mq的生产者,生产了消息之后,通过指定的topic发送到mq服务器。然后mq的消费者,订阅该topic的消息,读取消息数据之后,做业务逻辑处理。

使用mq重试的具体方案如下:

1.当用户操作写完数据库,但删除缓存失败了,产生一条mq消息,发送给mq服务器。

2.mq消费者读取mq消息,重试5次删除缓存。如果其中有任意一次成功了,则返回成功。如果重试了5次,还是失败,则写入死信队列中。

3.推荐mq使用rocketmq,重试机制和死信队列默认是支持的。使用起来非常方便,而且还支持顺序消息,延迟消息和事务消息等多种业务场景。

当然在该方案中,删除缓存可以完全走异步。即用户的写操作,在写完数据库之后,不用立刻删除一次缓存。而直接发送mq消息,到mq服务器,然后有mq消费者全权负责删除缓存的任务。

因为mq的实时性还是比较高的,因此改良后的方案也是一种不错的选择。

9. binlog

前面我们聊过的,无论是定时任务,还是mq(消息队列),做重试机制,对业务都有一定的侵入性。

在使用定时任务的方案中,需要在业务代码中增加额外逻辑,如果删除缓存失败,需要将数据写入重试表。

而使用mq的方案中,如果删除缓存失败了,需要在业务代码中发送mq消息到mq服务器。

其实,还有一种更优雅的实现,即监听binlog,比如使用:canal等中间件。

具体方案如下

1.在业务接口中写数据库之后,就不管了,直接返回成功。

2.mysql服务器会自动把变更的数据写入binlog中。

3.binlog订阅者获取变更的数据,然后删除缓存。

这套方案中业务接口确实简化了一些流程,只用关心数据库操作即可,而在binlog订阅者中做缓存删除工作。

但如果只是按照图中的方案进行删除缓存,只删除了一次,也可能会失败。

如何解决这个问题呢?

答:这就需要加上前面聊过的重试机制了。如果删除缓存失败,写入重试表,使用定时任务重试。或者写入mq,让mq自动重试。

在这里推荐使用mq自动重试机制。在binlog订阅者中如果删除缓存失败,则发送一条mq消息到mq服务器,在mq消费者中自动重试5次。如果有任意一次成功,则直接返回成功。如果重试5次后还是失败,则该消息自动被放入死信队列,后面可能需要人工介入

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1568015.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【python】python新闻内容zhua取分析词云可视化(源码)【独一无二】

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉公众号👈:测试开发自动化【获取源码商业合作】 👉荣__誉👈:阿里云博客专家博主、5…

Redis的基础操作

目录 一、Redis命令工具 1.redis-cli 命令行工具 2.redis-benchmark测试工具 3.Redis数据库五大类型 1、String 2、List 3、Hash(散列类型) 4、set无序集合 5、sorted set 二、Redis数据库常用命令 1、set与get的使用 2.查看数据库中键的情况…

深度学习:神经网络模型的剪枝和压缩简述

深度学习的神经网路的剪枝和压缩,大致的简述, 主要采用: network slimming,瘦身网络... 深度学习网络,压缩的主要方式: 1.剪枝,nerwork pruing, 2.稀疏表示,sparse rep…

基于向量数据库搭建自己的搜索引擎

前言【基于chatbot】 厌倦了商业搜索引擎搜索引擎没完没了的广告,很多时候,只是需要精准高效地检索信息,而不是和商业广告“斗智斗勇”。以前主要是借助爬虫工具,而随着技术的进步,现在有了更多更方便的解决方案&…

2024-HW --->SSRF

这不是马上准备就要护网了嘛,如火如荼的报名ing!!!那么小编就来查缺补漏一下以前的web漏洞,也顺便去收录一波poc!!!! 今天讲的主人公呢就是SSRF,以前学的时候…

QA测试开发工程师面试题满分问答5: 内存溢出和内存泄漏问题

概念阐述 内存溢出(Memory Overflow)和内存泄漏(Memory Leak)是与计算机程序中的内存管理相关的问题,它们描述了不同的情况。 内存溢出是指程序在申请内存时,要求的内存超出了系统所能提供的可用内存资源…

不到2000字,轻松带你搞懂STM32中GPIO的8种工作模式

大家好,我是知微! 学习过单片机的小伙伴对GPIO肯定不陌生,GPIO (general purpose input output)是通用输入输出端口的简称,通俗来讲就是单片机上的引脚。 在STM32中,GPIO的工作模式被细分为8种…

N1912A安捷伦N1912A功率计

181/2461/8938产品概述: 安捷伦N1912A双通道P系列宽带功率传感器为R&D和制造工程师提供精确和可重复的功率测量,应用市场包括航空航天和国防(雷达)、无线通信和无线802.11a/b/g网络。该仪表/传感器组合提供的测量包括峰值功率…

XXLJob中GLUE模式实现在线编写java/shell/python/php/nodejs/powerShell---SpringCloud工作笔记202

1.起因: 之前就一直想实现类似的功能,今天总于找到有可以参考的东西了,这个思路可以帮助实现这种功能. 2.获得灵感 就是:我想实现通过在线编写代码,来扩展我们平台的能力,这样随着业务的扩展,不用我们每次都修改了代码,再去部署,这样就比较麻烦,今天偶尔发现,对于xxljob来说.有…

React 入门

一、官网地址 英文官网: https://reactjs.org/中文官网: https://react.docschina.org/ 二、React 特点 声明式编码组件化编码React Native 编写原生应用高效(优秀的 Diffing 算法)高效的原因:1.使用虚拟DOM,不总是直接操作页面…

从 Redis 开源协议变更到 ES 国产化:一次技术自主的机遇

引言 近日,Redis Labs 宣布其主导的开源项目 Redis 将采用双重源代码可用许可证(RSALv2)和服务器端公共许可证(SSPLv1)。这一重大决策标志着 Redis 从传统的 BSD 许可证向更加严格的控制权转变,同时也引发…

AlexNet网络模型

AlexNet 是一个深度卷积神经网络,由 Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 在 2012 年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中首次提出并获得了显著的成功。它是深度学习历史上一个里程碑式的模型,对后来的深…

如何使用PL/SQL Developer工具导出clob字段的表?

1 准备测试数据 导出测试对象:表test_0102,others字段为clob类型 --创建中间表test_0101 create table test_0101( id number, name varchar2(20), others clob);--插入100条测试数据 beginfor i in 1..100 loopinsert into test_0101 values(i,i||_a,l…

文件批量重命名管理,一键将图片的名称进行统一重命名,高效管理文件

在数字时代,我们的生活中充满了各种文件,特别是图片文件。随着时间的推移,我们可能会遇到这样的问题:文件命名不规范,难以快速找到需要的图片。这时,一款强大的文件批量重命名管理工具就显得尤为重要。 首…

JavaScript(一)基础

文章目录 一、JS介绍JavaScript是什么JavaScript书写位置JavaScript的注释输入输出语法字面量 二、变量变量是什么变量基本使用变量的本质变量命名规则与规范变量拓展-数组var与let的区别 三、常量四、数据类型数据类型检测数据类型数据类型转换隐式转换显式转换 简单运算符断点…

git分支-基本分支与合并

问题假设 让我们通过一个简单的分支和合并的例子,演示在实际工作中可能会使用的工作流程。将按照以下步骤进行: 在网站上进行一些工作。为正在开发的新用户故事创建一个分支。在该分支上进行一些工作。 在这个阶段,我们可能会接到一个电话…

LC 144.二叉树的前序遍历

二叉树的前序遍历 给你二叉树的根节点 root ,返回它节点值的 前序 遍历。 示例 1: 输入: root [1,null,2,3] 输出:[1,2,3] 示例 2: 输入: root [] 输出:[] 示例 3: 输入&…

2024年 CS2最佳游戏启动项

引言: Counter-Strike 2(CS 2)是一款备受瞩目的游戏,而启动选项则是影响游戏性能和体验的关键因素之一。然而,有关所有选项都应该强制使用的说法并不正确。事实上,大多数选项可能对某些计算机并不适用&…

go 指针和内存分配

定义 了解指针之前,先讲一下什么是变量。 每当我们编写任何程序时,我们都需要在内存中存储一些数据/信息。数据存储在特定地址的存储器中。内存地址看起来像0xAFFFF(这是内存地址的十六进制表示)。 现在,要访问数据…

讲讲你对数据结构-线性表了解多少?

线性表 - 数组和矩阵 当谈到线性表时,数组和矩阵是两种常见的数据结构。 数组(Array): 数组是有序的元素集合,可以通过索引来访问和操作其中的元素。它是最简单、最基本的数据结构之一。数组的特点包括: …