Whisper对于中文语音识别与转写中文文本优化的实践(Python3.10)

news2024/11/19 7:29:48

原文:Whisper对于中文语音识别与转写中文文本优化的实践(Python3.10) - 知乎

阿里的FunAsr对Whisper中文领域的转写能力造成了一定的挑战,但实际上,Whisper的使用者完全可以针对中文的语音做一些优化的措施,换句话说,Whisper的“默认”形态可能在中文领域斗不过FunAsr,但是经过中文特殊优化的Whisper就未必了。

中文文本标注优化

Whisper经常被人诟病的一点是对中文语音转写后标点符号的支持不够完备。首先安装whisper:

pip install -U openai-whisper

编写转写脚本:

import whisper  
device = "cuda:0" if torch.cuda.is_available() else "cpu"
audio = whisper.load_audio(audio_path)  
audio = whisper.pad_or_trim(audio)

model = whisper.load_model("large-v2",download_root="./whisper_model/")

mel = whisper.log_mel_spectrogram(audio).to(model.device)

options = whisper.DecodingOptions(beam_size=5)

result = whisper.decode(model, mel, options)  
print(result.text)

程序返回:

Erwin_0.wav|Erwin|ZH|如果这个作战顺利。  
Erwin_1.wav|Erwin|ZH|你也许可以趁此机会干掉狩之巨人  
Erwin_10.wav|Erwin|ZH|如果到時候我不衝在最前面  
Erwin_11.wav|Erwin|ZH|他们根本不会往前冲然后我会第一个去死  
Erwin_12.wav|Erwin|ZH|地下室里到底有什么  
Erwin_13.wav|Erwin|ZH|也就无从知晓了好想去地下室看一看我之所以能撑着走到今天  
Erwin_14.wav|Erwin|ZH|就是因为相信这一天的到来。  
Erwin_15.wav|Erwin|ZH|因为艰辛着  
Erwin_16.wav|Erwin|ZH|我才想能够得到证实  
Erwin_17.wav|Erwin|ZH|我之前無數次的想過,要不然乾脆死了算了。  
Erwin_18.wav|Erwin|ZH|可即便如此,我還是想要實現父親的夢想。  
Erwin_19.wav|Erwin|ZH|然而现在  
Erwin_2.wav|Erwin|ZH|但得拿所有新兵不管選擇哪條路  
Erwin_20.wav|Erwin|ZH|她的答案就在我触手可及的地方  
Erwin_21.wav|Erwin|ZH|仅在咫尺死去的同伴们也是如此吗  
Erwin_22.wav|Erwin|ZH|那些流血的棲身,都是沒有意義的嗎?  
Erwin_23.wav|Erwin|ZH|不!不對!  
Erwin_24.wav|Erwin|ZH|那些死去士兵的意义将由我们来赋予  
Erwin_25.wav|Erwin|ZH|那些勇敢的死者可憐的死者  
Erwin_26.wav|Erwin|ZH|是他们的牺牲换来了我们活着的今天  
Erwin_27.wav|Erwin|ZH|让我们能站在这里否则今天我们将会死去  
Erwin_28.wav|Erwin|ZH|将依依托福给下一个活着的人  
Erwin_29.wav|Erwin|ZH|这就是我们与这个残酷的世界  
Erwin_3.wav|Erwin|ZH|我们基本都会死吧是的全灭的可能性相当的高  
Erwin_30.wav|Erwin|ZH|抗爭的意義  
Erwin_4.wav|Erwin|ZH|但事到如今,也只能做好玉石俱焚的觉悟。  
Erwin_5.wav|Erwin|ZH|將一切賭在獲勝渺茫的戰術上  
Erwin_6.wav|Erwin|ZH|到了这一步  
Erwin_7.wav|Erwin|ZH|要让那些年轻人们去死  
Erwin_8.wav|Erwin|ZH|就必须像一个一流的诈骗犯一样  
Erwin_9.wav|Erwin|ZH|对他们花言巧语一番

可以看到,除了语气特别强烈的素材,大部分都没有进行标点符号的标注。

但事实上,Whisper完全可以针对中文进行标注,只需要添加对应的引导词:

options = whisper.DecodingOptions(beam_size=5,prompt="生于忧患,死于欢乐。不亦快哉!")

这里通过prompt对其进行引导,通过逗号、句号以及感叹号对文本标注,引导后的效果:

Erwin_0.wav|Erwin|ZH|如果这个作战顺利。  
Erwin_1.wav|Erwin|ZH|你也许可以趁此机会干掉受之虚人。  
Erwin_10.wav|Erwin|ZH|如果到时候我不冲在最前面  
Erwin_11.wav|Erwin|ZH|他们根本不会往前冲,然后我会第一个去死。  
Erwin_12.wav|Erwin|ZH|地下室里到底有什么?  
Erwin_13.wav|Erwin|ZH|好想去地下室看一看,我之所以能撑着走到今天。  
Erwin_14.wav|Erwin|ZH|就是因为相信这一天的到来。  
Erwin_15.wav|Erwin|ZH|因为艰辛着D  
Erwin_16.wav|Erwin|ZH|我的猜想能够得到证实。  
Erwin_17.wav|Erwin|ZH|我之前无数次地想过,要不然干脆死了算了。  
Erwin_18.wav|Erwin|ZH|可即便如此,我还是想要实现父亲的梦想。  
Erwin_19.wav|Erwin|ZH|然而现在  
Erwin_2.wav|Erwin|ZH|但得拿所有新兵,不管选择哪条路。  
Erwin_20.wav|Erwin|ZH|他的答案就在我触手可及的地方。  
Erwin_21.wav|Erwin|ZH|竟在咫尺。死去的同伴们也是如此吗?  
Erwin_22.wav|Erwin|ZH|那些流血的牺牲,都是没有意义的吗?  
Erwin_23.wav|Erwin|ZH|不!不对!  
Erwin_24.wav|Erwin|ZH|那些死去士兵的意义将由我们来赋予!  
Erwin_25.wav|Erwin|ZH|那些勇敢的死者,可怜的死者!  
Erwin_26.wav|Erwin|ZH|是他们的牺牲换来了我们活着的今天!  
Erwin_27.wav|Erwin|ZH|让我们能站在这里,而今天我们将会死去!  
Erwin_28.wav|Erwin|ZH|将依依托福给下一个活着的人!  
Erwin_29.wav|Erwin|ZH|这就是我们与这个残酷的世界。  
Erwin_3.wav|Erwin|ZH|是的,全灭的可能性相当的高。  
Erwin_30.wav|Erwin|ZH|抗争的意义!  
Erwin_4.wav|Erwin|ZH|但事到如今,也只能做好玉石俱焚的觉悟。  
Erwin_5.wav|Erwin|ZH|将一切赌在获胜渺茫的战术上。  
Erwin_6.wav|Erwin|ZH|到了这一步  
Erwin_7.wav|Erwin|ZH|要让那些年轻人们去死。  
Erwin_8.wav|Erwin|ZH|就必须像一个一流的诈骗犯一样。  
Erwin_9.wav|Erwin|ZH|对他们花言巧语一番。

通过transformers来调用中文模型

transformers是一个用于自然语言处理(NLP)的开源库,由Hugging Face开发和维护。它提供了各种预训练的模型,包括文本生成、文本分类、命名实体识别等多种NLP任务的模型。transformers库基于Transformer模型架构,这是一种用于处理序列数据的深度学习模型。Transformer模型在NLP领域取得了巨大成功,因为它能够处理长距离依赖关系,并且在各种NLP任务上取得了优异的性能。

使用transformers库,开发人员可以轻松地访问和使用各种预训练的NLP模型,也可以使用该库进行模型的微调和训练。transformers库支持多种主流深度学习框架,包括PyTorch和TensorFlow。

首先安装transformers:

pip install -U transformers

编写转写代码:

from transformers import pipeline  

device = "cuda:0" if torch.cuda.is_available() else "cpu"  

def transcribe_bela(audio_path):  

    transcriber = pipeline(  
    "automatic-speech-recognition",   
    model="BELLE-2/Belle-whisper-large-v2-zh",  
    device=device  
    )  

    transcriber.model.config.forced_decoder_ids = (  
    transcriber.tokenizer.get_decoder_prompt_ids(  
        language="zh",   
        task="transcribe",  
    )  
    )  

    transcription = transcriber(audio_path)   

    print(transcription["text"])  
    return transcription["text"]

这里通过BELLE-2/Belle-whisper-large-v2-zh模型来进行转写,提高中文的识别准确度和效率。

这个模型是在whisper的large-v2模型上针对中文进行了微调,以增强中文语音识别能力, Belle-whisper-large-v2-zh 在中国 ASR 基准测试(包括 AISHELL1、AISHELL2、WENETSPEECH 和 HKUST)上表现出 30-70% 的相对改进。

该模型的官方地址:

https://huggingface.co/BELLE-2/Belle-whisper-large-v2-zh

当然,也不是没有缺陷,BELLE-2模型目前基于AISHELL、WENETSPEECH等数据做的微调,弱化了标点能力。

换句话说,没法通过引导词来打标,但其实也有其他解决方案,即可以基于标点模型 对转写文本加标点。比如这个方案:

https://modelscope.cn/models/damo/punc_ct-transformer_cn-en-common-vocab471067-large/summary

BELLE-2模型的作者相当热心,有问必答,这是笔者对其模型提的Issues:

https://github.com/LianjiaTech/BELLE/issues/571

现在该模型的瓶颈是,如果微调带标点的中文数据,这块开源数据相对比较少,无法进行有效的训练。

除了大模型的中文优化版本,也有针对small模型的中文优化版本:

https://huggingface.co/Jingmiao/whisper-small-chinese_base

结语

Whisper开源模型通过transformers的微调,可以将预训练模型应用于特定的中文NLP任务,从而提高模型在该任务上的性能。微调使模型能够学习适应特定任务的特征和模式,从而实现更好的效果。

发布于 2024-01-25 14:30・IP 属地北京

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1567232.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【LeetCode热题100】51. N 皇后(回溯)

一.题目要求 按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上,并且使皇后彼此之间不能相互攻击。 给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方…

hadoop:案例:将顾客在京东、淘宝、多点三家平台的消费金额汇总,然后先按京东消费额排序,再按淘宝消费额排序

一、原始消费数据buy.txt zhangsan 5676 2765 887 lisi 6754 3234 1232 wangwu 3214 6654 388 lisi 1123 4534 2121 zhangsan 982 3421 5566 zhangsan 1219 36 45二、实现思路:先通过一个MapReduce将顾客的消费金额进行汇总,再通过一个MapReduce来根据金…

RocketMQ是什么?

文章目录 一、RocketMQ是什么?二、RocketMQ 应用场景三、RocketMQ 优缺点1.优点2、缺点 一、RocketMQ是什么? RocketMQ 是一款纯 java、分布式、队列模型的消息中间件,支持事务消息、顺序消息、批量消息、定时消息、消息回溯等。 二、Rocke…

java数据结构与算法刷题-----LeetCode417. 太平洋大西洋水流问题

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 文章目录 深度优先遍历 深度优先遍历 解题思路:时间复杂度O( …

DIY蓝牙键盘(1) - 理解 键盘报文(免费)

DIY蓝牙键盘(1) - 理解键盘报文 1. 键盘报文体验 一个键盘对于用户的体验是,用户按按键A他能看到字母A会在主机上显示出来。那这是如何实现的? 其实很简单,只要键盘发送下面的两个报文给主机,字母A就能在主机上显示出来。 (1)…

【Qt】Ubuntu20.04.6+Qt5.15.2+QtCreator10.0.1无法输入中文

1、前提条件 1)已经安装了fcitx sudo apt install fcitx sudo apt install fcitx-pinyin sudo apt install fcitx-bin fcitx-table-all sudo apt install fcitx-qt52)系统已经配置fcitx 3)将系统下 /usr/lib/x86_64-linux-gnu/qt5/plugins/platforminputcontexts/libfcitx…

CSS3新增的语法(三)【2D,3D,过渡,动画】

CSS3新增的语法(三)【2D,3D,过渡,动画】 10.2D变换10.1. 2D位移10.2. 2D缩放10.3. 2D旋转10.4. 2D扭曲(了解)10.5. 多重变换10.6. 变换原点 11. 3D变换11.1. 开启3D空间11.2. 设置景深11.3. 透视点位置11.4. 3D 位移11…

java数据结构与算法刷题-----LeetCode79. 单词搜索

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846 文章目录 回溯深度优先遍历 回溯深度优先遍历 解题思路:时间复…

Vue 大文件切片上传实现指南包会,含【并发上传切片,断点续传,服务器合并切片,计算文件MD5,上传进度显示,秒传】等功能

Vue 大文件切片上传实现指南 背景 在Web开发中,文件上传是一个常见的功能需求,尤其是当涉及到大文件上传时,为了提高上传的稳定性和效率,文件切片上传技术便显得尤为重要。通过将大文件切分成多个小块(切片&#xff0…

Rust线程间通信通讯channel的理解和使用

Channel允许在Rust中创建一个消息传递渠道,它返回一个元组结构体,其中包含发送和接收端。发送端用于向通道发送数据,而接收端则用于从通道接收数据。不能使用可变变量的方式,线程外面修改了可变变量的值,线程里面是拿不…

UE5启用SteamOS流程

一、安装OnlineSubsystemSteam插件 1、在UE里安装OnlineSubsystemSteam 2、设置默认开始地图 3、设置DefaultEngine.ini文件: 打开项目根目录/Config/DefaultEngine.ini文件 打开官网的配置说明 复制并粘贴到该文件中 4、设置运行模式 5、测试 确保Steam平台已…

云原生:应用敏捷,华为视角下的应用现代化

Gartner 也提出,到 2023 年,新应用新服务的数量将达到 5 亿,也即是说:“每个企业都正在成为软件企业”。据IDC 预测,到 2025 年三分之二的企业将成为多产的“软件企业”,每天都会发布软件版本。越来越多的企…

【HTML】简单制作一个动态3D正方体

目录 前言 开始 HTML部分 JS部分 CSS部分 效果图 总结 前言 无需多言,本文将详细介绍一段代码,具体内容如下: 开始 首先新建文件夹,创建两个文本文档,其中HTML的文件名改为[index.html],JS的文件名改…

基于Python深度学习的中文情感分析系统(V2.0)

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

v3-admin-vite 改造自动路由,view页面自解释Meta

需求 v3-admin-vite是一款不错的后端管理模板,主要是pany一直都在维护,最近将后台管理也进行了升级,顺便完成一直没时间解决的小痛痒: 在不使用后端动态管理的情况下。我不希望单独维护一份路由定义,我希望页面是自解…

STM32的定时器中断Cubemx

STM32的定时器中断Cubemx 0.定时器简介1.配置时钟2.配置定时器3.创建工程4.补充源码 0.定时器简介 基本定时器功能: 16位向上、向下、向上/下自动装载计数器16位可编程(可以实时修改)预分频器,计数器时钟频率的分频系数为1~65535之间的任意…

BGP-(as-path-filter)

BGP-as-path-filter,缺省 as-path-filter,正则表达式,as-path过滤器,对于BGP的as-path属性实际上可以看成是一个包含空格的字符串。 特点:1、通过对BGP路由的as-path属性进行匹配达到对BGP路由的过滤。 2、在route-…

Vue组件封装重要知识点

一、什么是组件? Vue.js的一个核心思想是组件化。所谓组件化,就是把页面拆分成多个组件,每个组件依赖的CSS、JavaScript、模板、图片等资源放在一起开发和维护。组件是资源独立的,组件在系统内部可复用,组件和组件之间…

时序预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络时间序列预测

时序预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络时间序列预测 目录 时序预测 | Matlab实现CPO-BiLSTM【24年新算法】冠豪猪优化双向长短期记忆神经网络时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-BiLST…

目标检测——图像中提取文字

一、重要性及意义 图像提取文本,即光学字符识别(OCR)技术,在现代社会中的重要性和意义日益凸显。以下是关于图像提取文本的重要性和意义的几个关键方面: 信息获取的效率提升 快速处理大量文档:OCR技术可…