如何在本地搭建集成大语言模型Llama 2的聊天机器人并实现无公网IP远程访问

news2025/1/9 23:49:08

文章目录

    • 1. 拉取相关的Docker镜像
    • 2. 运行Ollama 镜像
    • 3. 运行Chatbot Ollama镜像
    • 4. 本地访问
    • 5. 群晖安装Cpolar
    • 6. 配置公网地址
    • 7. 公网访问
    • 8. 固定公网地址

随着ChatGPT 和open Sora 的热度剧增,大语言模型时代,开启了AI新篇章,大语言模型的应用非常广泛,包括聊天机器人、智能客服、自动翻译、写作助手等。它们可以根据用户输入的文本生成相应的响应,提供个性化的建议和服务,目前大部分大语言模型的产品都是基于网络线上的,如果我们本地想自己部署一个自己的大语言模型,该如何操作呢,下面介绍一款可以在自己本地部署运行的大语言模型Llama 2

Llama 2是一款开源的大语言模型,其中训练的数据目前已经达到7B级别,在上下文长度为4K下的单轮与多轮对话中表现出色,部署运行Llama 2同时需要借助一个框架Ollama.

Ollama是一个强大的框架,设计用于在Docker容器中部署大型语言模型(LLM)。它的主要功能是简化在Docker容器内部署和管理LLM的过程。Ollama通过提供简单的安装指令,使用户能够轻松地在本地运行大型开源语言模型.

借助Ollama 框架可以很方便运行Llama2大语言模型,同时,为了方便与模型进行交互,还需要部署一个web交互 界面Chatbot-Ollama.

Chatbot-Ollama是一个基于Ollama框架的聊天机器人前端应用。它利用Ollama框架提供的接口和功能,将大型语言模型(LLM)集成到聊天机器人中,使其能够与用户进行交互,并提供各种聊天机器人服务。

Chatbot-Ollama 接入本地Ollama框架运行的Llama2大语言模型,使我们可以很轻松简便在本地创建一个聊天机器人.Chatbot-Ollama 同时也是基于docker本地部署的,本地部署,只能局限于本地访问,无法做到提供远程给其他人访问,下面我们还需要安装一个内网穿透工具cpolar,使得本地聊天机器人可以被远程访问.

Cpolar是一款强大的内网穿透软件,它能够在多个操作系统上无缝运行,包括Windows、MacOS和Linux,因此无论您使用哪种操作系统,都可以轻松将本地内网服务器的HTTP、HTTPS、TCP协议端口映射为公网地址端口,使得公网用户可以轻松访问您的内网服务,无需部署至公网服务器.

下面我们通过群晖Docker来演示如何结合上面介绍的技术来运行一个自己的本地聊天机器人并且发布到公网访问.本地部署,对设备配置要求高一些,如果想要拥有比较好的体验,可以使用高配置的服务器设备.

1. 拉取相关的Docker镜像

运行Llama 2需要借助Ollama镜像,对语言模型进行交互需要用到Chatbot-Ollama前端界面,所以我们需要拉取这两个docker镜像,本例群晖版本由于无法直接在群晖控制面板docker界面搜索下载镜像,所以采用命令行方式进行镜像下载,首先开启群晖ssh连接,然后使用工具通过ssh连接上群晖,分别执行下面docker命令 拉取

*拉取Ollama镜像命令

sudo docker  pull ollama/ollama:latest

*拉取Chatbot-Ollama镜像命令

sudo docker  pull ghcr.io/ivanfioravanti/chatbot-ollama:main

拉取成功后,我们可以在Docker界面看到拉取的两个镜像,下面开始运行两个镜像,首先运行ollama

image-20240228134827663

2. 运行Ollama 镜像

选中镜像,点击运行进入配置界面,名称无需设置,默认即可,然后点击下一步

image-20240228140210393

输入外部访问的端口,和容器内部端口一致,填写11434即可,然后点击下一步

image-20240228140324795

然后点击完成即可运行ollama

image-20240228140944482

运行后,打开容器界面,可以看到运行的服务,下面开始下载运行Llama 2模型,点击选中ollama容器,点击操作

image-20240228141509408

然后打开终端机,进入终端命令界面

image-20240228141933061

然后选择左边新增一个bash命令界面

image-20240228142029589

然后在bash命令界面,执行ollama run llama2命令,接着等待下载即可,最后出现success,表示下载运行Llama 2模型成功,下载完成后可以关闭掉窗口.这样ollama 容器启动,并运行Llama 2模型就成功了,下面运行chatbot-ollama镜像,配置前端交互界面

image-20240228142952591

3. 运行Chatbot Ollama镜像

选中我们下载的镜像,点击运行,开始进行设置

image-20240228143332721

名称可以默认,直接点击下一步

image-20240228143615754

设置对外端口,本例设置3001,具体可以自己自定义,这个端口也是我们浏览器上web访问的端口

image-20240228143700098

然后设置一个环境变量,该变量就是连接我们上面运行Ollama框架服务的地址,我们设置本地地址:http://群晖局域网IP:11434即可,设置完成点击下一步,然后直接点击完成即可,chatbot Ollama镜像就运行成功了,接下来我们进行本地访问.

image-20240228151028916

4. 本地访问

上面我们运行设置chatbot ollama 的对外端口是3001(具体以自己设置的为准),下面我们在浏览器访问群晖3001端口,既可看到我们的web交互 界面,同时,上面显示了使用的llama2模型,下面输入文字即可对话,这样一个本地部署的机器人就完成了,对话的响应速度取决于设备的配置,尽量使用高配置的服务器运行部署哦,本地完成后,我们接下来设置远程也可以访问,下面安装cpolar工具,实现无公网IP也可以远程访问我们的聊天机器人界面!

image-20240228144800166

5. 群晖安装Cpolar

点击下面Cpolar群晖套件下载地址,下载相应版本的群晖Cpolar套件

https://www.cpolar.com/synology-cpolar-suite,

20221222170135

打开群晖套件中心,点击右上角的手动安装按钮。

image-20240111165335915

选择我们本地下载好的cpolar套件安装包,然后点击下一步

image-20240111165603922

点击同意按钮,然后点击下一步

image-20240111165702028

最后点击完成即可。

image-20240111165721365

安装完成后,在外部浏览器,我们通过群晖的局域网ip地址9200端口访问Cpolar的Web管理界面,然后输入Cpolar邮箱账号与密码进行登录

image-20230612165349594

6. 配置公网地址

点击左侧仪表盘的隧道管理——创建隧道,创建一个chatbot的公网地址隧道!

  • 隧道名称:可自定义命名,注意不要与已有的隧道名称重复
  • 协议:选择http
  • 本地地址:3001 (本地访问的端口)
  • 域名类型:免费选择随机域名
  • 地区:选择China

点击创建

image-20240228151510280

隧道创建成功后,点击左侧的状态——在线隧道列表,查看所生成的公网访问地址,有两种访问方式,一种是http 和https,下面我们使用生成的http地址访问

image-20240228151723949

7. 公网访问

使用上面cpolar生成的http地址,在浏览器访问,同样可以看到聊天机器人主界面,公网地址访问成功,无需公网IP,无需云服务器,即可把我们本地聊天机器人发布到公网进行访问!

image-20240228152929542

小结

为了更好地演示,我们在前述过程中使用了cpolar生成的隧道,其公网地址是随机生成的。

这种随机地址的优势在于建立速度快,可以立即使用。然而,它的缺点是网址由随机字符生成,不太容易记忆(例如:3ad5da5.r10.cpolar.top)。另外,这个地址在24小时内会发生随机变化,更适合于临时使用。

我一般会使用固定二级子域名,原因是我希望将网址发送给同事或客户时,它是一个固定、易记的公网地址(例如:chatbot.cpolar.cn),这样更显正式,便于流交协作。

8. 固定公网地址

由于以上使用Cpolar所创建的隧道使用的是随机公网地址,24小时内会随机变化,不利于长期远程访问。因此我们可以为其配置二级子域名,该地址为固定地址,不会随机变化【ps:cpolar.cn已备案】

注意需要将cpolar套餐升级至基础套餐或以上,且每个套餐对应的带宽不一样。【cpolar.cn已备案】

登录cpolar官网,点击左侧的预留,选择保留二级子域名,设置一个二级子域名名称,点击保留,保留成功后复制保留的二级子域名名称

image-20240228152456948

保留成功后复制保留成功的二级子域名的名称

image-20240228152519922

返回登录Cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道,点击右侧的编辑

image-20240228152612455

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名
  • Sub Domain:填写保留成功的二级子域名

点击更新(注意,点击一次更新即可,不需要重复提交)

image-20240228152638853

更新完成后,打开在线隧道列表,此时可以看到公网地址已经发生变化,地址名称也变成了固定的二级子域名的名称域名

image-20240228152714604

最后,我们使用固定的公网http地址访问,可以看到同样访问成功,这样一个固定且永久不变的公网地址就设置好了!

image-20240228152806444

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1566603.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python字典操作

假设我们有一个学生信息数据库,其中存储了每个学生的姓名、年龄、性别和成绩。我们可以使用字典来表示每个学生的信息,并将所有学生存储在一个字典列表中。 设计者:ISDF 版本:v1.0 日期:03/29/2024# 定义学生信息字典列…

Ruby 之交租阶段信息生成

题目 我看了一下,这个题目应该不是什么机密,所以先放上来了。大概意思是根据合同信息生成交租阶段信息。 解答 要求是要使用 Ruby 生成交租阶段信息,由于时间比较仓促,变量名那些就用得随意了些。要点主要有下面这些&#xff1a…

高级IO/多路转接-select/poll(1)

概念背景 IO的本质就是输入输出 刚开始学网络的时候,我们简单的写过一些网络服务,其中用到了read,write这样的接口,当时我们用的就是基础IO,高级IO主要就是效率问题。 我们在应用层调用read&&write的时候&…

八、从0开始卷出一个新项目之瑞萨RZN2L 3.1.7 debug调试和下载

目录 3.1.7 debug调试和下载 3.1.7.1 官方介绍 3.1.7.2 e2studio debug变量实时监控 3.1.7.3 Iar debug变量实时监控 3.1.7.4 debug经验总结 八、从0开始卷出一个新项目之瑞萨RZN2L 3.1.7 debug调试和下载 3.1.7 debug调试和下载 3.1.7.1 官方介绍 官网: d…

day02-java类型转换和运算符

1.温故而知新 整形 byte 1字节 8位 short 2字节 16位 int 4字节 32位 long 8字节 64位 内存存储时 X符号位 byte X0000000 short X0000000 00000000 int X0000000 00000000 00000000 long X0000000 00000000 00000000 00000000 long longNum 10000L;//l或者L 查看源码最大值…

数据库之迁移常规操作(Mysql篇)

借鉴的文章 》》https://blog.csdn.net/weixin_65685029/article/details/132413482?ops_request_misc&request_id&biz_id102&utm_termmysql备份与还原&utm_mediumdistribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-1-132413482.nonecase…

C语言 | Leetcode C语言题解之第6题Z字形变换

题目&#xff1a; 题解&#xff1a; char * convert(char * s, int numRows){int n strlen(s), r numRows;if (r 1 || r > n) {return s;}int t r * 2 - 2;char * ans (char *)malloc(sizeof(char) * (n 1));int pos 0;for (int i 0; i < r; i) { // 枚举矩阵的…

语言模型进化史(下)

由于篇幅原因&#xff0c;本文分为上下两篇&#xff0c;上篇主要讲解语言模型从朴素语言模型到基于神经网络的语言模型&#xff0c;下篇主要讲解现代大语言模型以及基于指令微调的LLM。文章来源是&#xff1a;https://www.numind.ai/blog/what-are-large-language-models 四、现…

Multi-Head Attention 代码实现

Multi-Head Attention 代码实现 flyfish MultiHead ( Q , K , V ) Concat ( head 1 , . . . , head h ) W O \text{MultiHead}(Q, K, V) \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O MultiHead(Q,K,V)Concat(head1​,...,headh​)WO head i Attention ( Q W i Q…

kettle使用MD5加密增量获取接口数据

kettle使用MD5加密增量获取接口数据 场景介绍&#xff1a; 使用JavaScript组件进行MD5加密得到Http header&#xff0c;调用API接口增量获取接口数据&#xff0c;使用json input组件解析数据入库 案例适用范围&#xff1a; MD5加密可参考、增量过程可参考、调用API接口获取…

C++(set和map详解,包含常用函数的分析)

set set是关联性容器 set的底层是在极端情况下都不会退化成单只的红黑树,也就是平衡树,本质是二叉搜索树. set的性质:set的key是不允许被修改的 使用set需要包含头文件 set<int> s;s.insert(1);s.insert(1);s.insert(1);s.insert(1);s.insert(2);s.insert(56);s.inser…

面试题:RabbitMQ 消息队列中间件

1. 确保消息不丢失 生产者确认机制 确保生产者的消息能到达队列&#xff0c;如果报错可以先记录到日志中&#xff0c;再去修复数据持久化功能 确保消息未消费前在队列中不会丢失&#xff0c;其中的交换机、队列、和消息都要做持久化消费者确认机制 由spring确认消息处理成功后…

Java基础之流程控制语句(循环)

文章目录 Java基础之流程控制语句(循环)1.顺序结构2.分支结构if语句的第一种格式if语句的第二种格式if语句的第三种格式Switch语句格式Switch的其他知识点default的位置和省略case穿透Switch的新特性 3.循环结构循环的分类for 循环while 循环for循环 与 while循环 的对比 4.do.…

RAG原理、综述与论文应用全解析

1. 背景 1.1 定义 检索增强生成 (Retrieval-Augmented Generation, RAG) 是指在利用大语言模型回答问题之前&#xff0c;先从外部知识库检索相关信息。 早在2020年就已经有人提及RAG的概念&#xff08;paper&#xff1a;Retrieval-augmented generation for knowledge-inten…

IDEA 解决 java: 找不到符号 符号: 类 __ (使用了lombok的注解)

原因IDEA版本太高&#xff0c;在 ProcessingEnvironement 预编译的时候是以代理的方式来执行的&#xff0c;不再是直接 javac方式, lombok依赖的 javac方式的 annotation processors 不再生效了 解决办法&#xff1a;下面这一句&#xff0c;加在下图中 -Djps.track.ap.depen…

八口快速以太网交换机芯片方案分享/JL5110

以太网交换机(switch)是一种网络设备&#xff0c;用于在局域网中连接多个计算机和其他网络设备。它可以实现多个端口之间的同时传输&#xff0c;并根据MAC地址进行帧过滤和转发。交换机通过自学习的方式&#xff0c;将MAC地址与相应的接口关联起来&#xff0c;以便将数据帧准确…

C语言中的数组与函数指针:深入解析与应用

文章目录 一、引言二、数组的定义1、数组的定义与初始化2、char*与char[]的区别1. 存储与表示2. 修改内容3. 作为函数参数 三、字符串指针数组1. 定义与概念2. 使用示例3. 内存管理 四、从字符串指针数组到函数指针的过渡1、字符串指针数组的应用场景2、函数指针的基本概念3、如…

【RedHat9.0】Timer定时器——创建单调定时器实例

一个timer&#xff08;定时器&#xff09;的单元类型&#xff0c;用来定时触发用户定义的操作。要使用timer的定时器&#xff0c;关键是要创建一个定时器单元文件和一个配套的服务单元文件&#xff0c;然后启动这些单元文件。 定时器类型&#xff1a; 单调定时器&#xff1a;即…

解析html内容的h标签成目录树(markdown解析出来的html)

一.本人用的markdown插件是cherry-markdown&#xff0c;个人觉得比较好用&#xff0c;画图和数学公式都整合的很好 https://github.com/Tencent/cherry-markdown 二.背景 经过markdown解析的html&#xff0c;要取里面的h标签转换成目录树&#xff0c;发现这里面都要人工计算&…

EXCEL-VB编程实现自动抓取多工作簿多工作表中的单元格数据

一、VB编程基础 1、 EXCEL文件启动宏设置 文件-选项-信任中心-信任中心设置-宏设置-启用所有宏 汇总文件保存必须以宏启动工作簿格式类型进行保存 2、 VB编程界面与入门 参考收藏 https://blog.csdn.net/O_MMMM_O/article/details/107260402?spm1001.2014.3001.5506 二、…