10.图像高斯滤波的原理与FPGA实现思路

news2024/11/25 18:50:41

1.概念

高斯分布
图像滤波之高斯滤波介绍
图像处理算法|高斯滤波
  高斯滤波(Gaussian filter)包含很多种,包括低通、高通、带通等,在图像上说的高斯滤波通常是指的高斯模糊(Gaussian Blur),是一种高斯低通滤波。通常这个算法也可以用来模糊图像,提供模糊滤镜。也可以用来过滤自然界的高斯白噪声。
  高斯分布(正态分布)是一个常见的连续概率分布,正态分布的数学期望值或期望值 μ \mu μ等于位置参数,决定了分布的位置,其方差 σ 2 \sigma^2 σ2的开平方或者标准差 σ \sigma σ等于尺度参数,决定了分布的幅度。正态分布的概率密度函数曲线呈钟形,所以又被称为钟形曲线。我们常说的标准正态分布是位置参数 μ = 0 , 方差 σ 2 = 1 \mu=0,方差\sigma^2=1 μ=0,方差σ2=1的正态分布
  若随机变量 X X X服从一个位置参数为 μ 、方差为 σ 2 \mu、方差为\sigma^2 μ、方差为σ2的正态分布,可以记为 X   N ( μ , σ 2 ) X~N(\mu,\sigma^2) X N(μ,σ2),其概率密度函数为:
g ( x ) = 1 2 π σ e ( − ( x − μ ) 2 2 σ 2 ) (1) g(x)=\frac{1} {\sqrt{2\pi} \sigma }e^{(-\frac{{(x-\mu)}^{2} }{2\sigma^{2}})}\tag{1} g(x)=2π σ1e(2σ2(xμ)2)(1)
  高斯滤波器是一种根据高斯函数的形状来选择权值的线性平滑滤波器,对于抑制服从正态分布的噪声非常有效,一维零均值高斯函数为:
g ( x ) = 1 2 π σ e − x 2 2 σ 2 (2) g(x)=\frac{1} {\sqrt{2\pi} \sigma }e^{-\frac{x^{2} }{2\sigma^{2}}}\tag{2} g(x)=2π σ1e2σ2x2(2).
  其中,高斯分布参数( σ \sigma σ)决定了高斯函数的宽度,一维高斯函数的图形如下图:
在这里插入图片描述
  二维高斯高斯分布的函数为:
g ( x , y ) = 1 2 π σ 2 e − x 2 + y 2 2 σ 2 (3) g(x,y)=\frac{1}{2\pi\sigma^2}e^{\frac{-x^2+y^2}{2\sigma^2}}\tag{3} g(x,y)=2πσ21e2σ2x2+y2(3)
  二维高斯分布的图像为:
在这里插入图片描述

2.高斯滤波性质

  高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:
  1.二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.
  2.高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.
  3.高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.
  4.高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.
  5.由于高斯函数的可分离性,较大尺寸的高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.

3.高斯滤波的原理与实现

  高斯滤波既能用来过滤高斯噪音,也可用来做高斯模糊。
  要模糊一张图像,可以直接用均值滤波来做简单的模糊,但是这样做显然不大合理,因为图像是连续的,离卷积核中心的点关系更加密切,越远的点关系越疏远,这个时候就需要加权平均。明显的离中心点越近的像素点权重越大。而正态分布显然是一种可取的权重分配方式,又由于图像是二维的,所以需要使用二维的高斯函数。所以高斯滤波的本质是利用高斯函数来生成高斯核(高斯卷积模板)来对图像进行卷积操作。
  理论上高斯分布在所有定义域上都有非负值,这就需要一个无限大的卷积核,但是实际上,仅需要取均值的三倍标准差(即 3 σ 3\sigma 3σ)内的值,以外的部分去掉即可。
  高斯滤波最重要的就是找到高斯模板然后进行卷积,以3X3高斯模板为例,假设中心点的坐标为(0,0),根据二维高斯函数 g ( x , y ) g(x,y) g(x,y),还需要设定 σ \sigma σ的值,假定 σ = 0.8 \sigma=0.8 σ=0.8(这个值不宜过大,否则就会变成均值滤波),可以根据坐标值来算出对应的高斯模板。
  假定中心点的坐标为(0,0),那么距离它最近的八个点的坐标如下:
在这里插入图片描述
  将坐标以及设定的 σ \sigma σ带入二维高斯函数中,可以得到对应点的坐标的权重如下:
在这里插入图片描述

  为了防止高斯滤波后的图像偏亮或者偏暗,我们还需要对图像进行归一化,这九个点的权重和等于0.9125991,因此需要分别对这九个数除以0.9125991,最终得到的高斯模板为:
在这里插入图片描述
  有了高斯模板就可以对图像进行卷积了,但是在FPGA中对于小数的运算不友好,于是我们将这个3X3模板扩大了16倍,得到了近似的整数模板,卷积完成后再除以16来做定浮点数的近似计算。16倍后的模板高斯卷积模板为:
在这里插入图片描述
  3X3的高斯模板生成与定浮点数的MATLAB算法实现为:

clear;
clc;
close all;
sigma = 0.8 ;
A = exp(-(1+1)/(2*sigma*sigma))/(2*pi*sigma*sigma);
B = exp(-(1+0)/(2*sigma*sigma))/(2*pi*sigma*sigma);
C = exp(-(0+0)/(2*sigma*sigma))/(2*pi*sigma*sigma);
D = A*4 + B*4 + C;

gauss_double = [A,B,A;B,C,B;A,B,A];
gauss_normal = gauss_double / sum(sum(gauss_double));
gauss_integer = floor(gauss_normal/gauss_normal(1,1));

  生成卷积模板后的FPGA实现这里就不作过多介绍了,参考前几章的3X3卷积核以及均值滤波的实现方式改变参数即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1565617.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基本电路理论-电流和电压的参考方向

🌈个人主页:会编程的果子君 💫个人格言:“成为自己未来的主人~” 电流及参考方向 电流:带电粒子有规则的定向移动 电流强度:单位时间内通过导体横截面的电荷量,即:idq/dt 单位&#xff1a…

解决Toad for Oracle显示乱中文码问题

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 http://122.227.135.243:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a…

leet hot 100-13 最大子数组和

53. 最大子数组和 原题链接思路代码 原题链接 leet hot 100-10 53. 最大子数组和 思路 生成一个数字来记录last 表示前面数字全部之和与0取最大值 如果大于0 就加上如果不大于0 就不管 从当前位置从新开始遍历计算 时间复杂度O(n) 空间复杂度(1) 代码 class Solution {…

补充:一起来从Solidworks中导出机械臂的URDF模型

关于上一篇博客:一起来从Solidworks中导出URDF模型-CSDN博客 我们一起完成了小车的URDF模型的导出与Rviz界面中的可视化,下面一起来继续从Solidworks中导出关于机械臂的URDF模型 3. 如何导出机械臂URDF模型 与之前的小车结构不同,机械臂的…

【Hello,PyQt】PyQt5中的一些对话框

QDialog类是一种特殊的窗口,它被设计出来作为和用户进行交换的对话框。QDialog上是可以包含其他的控件的,比如QLineEdit,QPushButton等。QDialog类的子类主要有QMessageBox,QFileDialog,QColorDialog,QFont…

如何制作一个微信小程序商城?

在这个数字化飞速发展的时代,微信小程序商城以其独特的便捷性和高效的用户连接能力,成为了电商领域的一颗新星。对于那些渴望在微信平台上开展业务的商家和企业来说,微信小程序商城不仅是一种新的尝试,更是一个充满无限可能的商机…

通过nvtx和Nsight Compute分析pytorch算子的耗时

通过nvtx和Nsight Compute分析pytorch算子的耗时 一.效果二.代码 本文演示了如何借助nvtx和Nsight Compute分析pytorch算子的耗时 一.效果 第一次执行,耗时很长 小规模的matmul,调度耗时远大于算子本身 大规模的matmul,对资源的利用率高小规模matmul,各层调用的耗时 二.代码…

Sketch webView方式插件开发技术总结

Sketch作为一款广受欢迎的矢量图形设计工具,其功能远不止基础的矢量设计,它的真正实力部分源自其丰富的插件生态系统。Sketch向开发者提供了官方的第三方插件接口,这使得整个社区能够创建和分享众多功能各异的插件,极大地拓展了Sk…

sdrangel使用说明

使用说明 首先找一个usrp设备,我找到的是b205进行连接。打开生成的sdrangel.exe,第一次打开会出现空白界面 点击Add Rx Device按钮。 然后会弹出一个设备刷新窗口,选择你需要的设备 点击OK后,会响应一段时间,然后弹…

实用VBA:18.角度或坐标的格式转换(单位换算)

1.需求场景 在某些行业工作中,可能会遇到需要将角度或者坐标数值进行格式转换或者单位换算的情形。有很多小工具可以实现这样的换算,也有一些大型的专业软件带有单位换算的模块或者小插件,或者在excel单元格中写入计算公式。其实使用VBA写个函…

ImportError: cannot import name ‘PILLOW_VERSION‘ from ‘PIL‘

原因:torchvision模块在运行时要调用PIL模块的PILLOW_VERSION函数,但PILLOW_VERSION在Pillow 7.0.0之后的版本被移除了,Pillow 7.0.0之后的版本使用__version__函数代替PILLOW_VERSION函数。 解决方法:降低pillow版本即可。 参考…

网络原理 - HTTP / HTTPS(2)——http请求

目录 一、认识 “方法”(method) 1、GET方法 2、POST方法 (1)登录 (2)上传 (3)GET和POST使用习惯 3、GET方法和POST方法的区别 正确滴 关于一些网上的说法,错误滴…

两数之和-考察哈希表的运用

题目 给定一个整数数组 n u m s nums nums和一个整数目标值 t a r g e t target target,请你在该数组中找出和为目标值 t a r g e t target target的那 两个整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同…

Apache ECharts-数据统计(详解、入门案例)

简介:Apache ECharts 是一款基于 Javascript 的数据可视化图表库,提供直观,生动,可交互,可个性化定制的数据可视化图表。 1、介绍 图 1.1 Apache ECharts 功能、运行环境 功能: ECharts&#xff…

pymc,一个灵活的的 Python 概率编程库!

目录 前言 安装与配置 概率模型 贝叶斯推断 概率分布 蒙特卡罗采样 贝叶斯网络 实例分析 PyMC库的应用场景 1. 概率建模 2. 时间序列分析 3. 模式识别 总结 前言 大家好,今天为大家分享一个超强的 Python 库 - pymc Github地址:https://gith…

开源大模型AI代理操作系统:像Windows一样,操控AI代理

去年,AutoGPT的出现让我们见识到了AI代理强大的自动化能力,并开创了一个全新的AI代理赛道。但在子任务调度、资源分配以及AI之间协作还有不少的难题。 因此,罗格斯大学的研究人员开源了AIOS,这是一种以大模型为核心的AI代理操作系…

JVM 记录

记录 工具 https://gceasy.io 资料 尚硅谷宋红康JVM全套教程(详解java虚拟机) https://www.bilibili.com/video/BV1PJ411n7xZ?p361 全套课程分为《内存与垃圾回收篇》《字节码与类的加载篇》《性能监控与调优篇》三个篇章。 上篇《内存与垃圾回收篇…

鸿蒙开发-ArkTS语言-并发

鸿蒙开发-UI-交互事件-键鼠事件 鸿蒙开发-UI-交互事件-焦点事件 鸿蒙开发-UI-交互事件-手势事件 鸿蒙开发-UI-web 鸿蒙开发-UI-web-页面 鸿蒙开发-ArkTS语言-基础类库 文章目录 前言 一、并发概述 二、异步并发开发 1. 异步并发概述 1.1 Promise 1.2 async/await 2. 单次…

Linxu的开发工具(三):缓冲区、进度条程序和调试器gdb

目录 缓冲区 倒计时程序 对出现swp文件报错的补充: 进度条程序 将tab键设置为四个空格 调试器-gdb 对比测试 实际应用 缓冲区 前言:\n会产生换行和回车两个动作: 回车:回到下一行行首换行:移动到当前所在位置…

《大模型面试宝典》(2024版) 正式发布!

2022 年11月底,OpenAI 正式推出 ChatGPT ,不到两个月的时间,月活用户就突破1亿,成为史上增长最快的消费者应用。 目前国内已发布的大模型超过200个,大模型的出现彻底改变了我们的生活和学习方式。 只要你想从事 AI 相…