C刊级 | Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

news2024/12/23 14:12:25

C刊级 | Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测

目录

    • C刊级 | Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测(完整源码和数据),优化学习率,BiGRU的神经元个数,滤波器个数, 正则化参数;
2.输入多个特征,输出单个变量,回归预测,自注意力机制层,运行环境matlab2023及以上;
3.命令窗口输出R2、MAE、MAPE、 RMSE多指标评价;
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现GWO-BiTCN-BiGRU-Attention灰狼算法优化双向时间卷积双向门控循环单元融合注意力机制多变量回归预测
%%  清空环境变量
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
warning off             % 关闭报警信息
%% 导入数据
res = xlsread('data.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  格式转换
for i = 1 : M 
    vp_train{i, 1} = p_train(:, i);
    vt_train{i, 1} = t_train(:, i);
end

for i = 1 : N 
    vp_test{i, 1} = p_test(:, i);
    vt_test{i, 1} = t_test(:, i);
end

disp('程序运行时间较长,需迭代popsize*maxgen次!可自行调整运行参数')

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)

%%  优化算法初始化
Alpha_pos = zeros(1, dim);  % 初始化Alpha狼的位置
Alpha_score = inf;          % 初始化Alpha狼的目标函数值,将其更改为-inf以解决最大化问题

Beta_pos = zeros(1, dim);   % 初始化Beta狼的位置
Beta_score = inf;           % 初始化Beta狼的目标函数值 ,将其更改为-inf以解决最大化问题

Delta_pos = zeros(1, dim);  % 初始化Delta狼的位置
Delta_score = inf;          % 初始化Delta狼的目标函数值,将其更改为-inf以解决最大化问题

%%  初始化搜索狼群的位置
Positions = initialization(SearchAgents_no, dim, ub, lb);

%%  用于记录迭代曲线
Convergence_curve = zeros(1, Max_iteration);
%%  循环计数器
iter = 0;

%%  优化算法主循环
while iter < Max_iteration           % 对迭代次数循环
    for i = 1 : size(Positions, 1)   % 遍历每个狼

        % 返回超出搜索空间边界的搜索狼群
        % 若搜索位置超过了搜索空间,需要重新回到搜索空间
        Flag4ub = Positions(i, :) > ub;
        Flag4lb = Positions(i, :) < lb;

        % 若狼的位置在最大值和最小值之间,则位置不需要调整,若超出最大值,最回到最大值边界
        % 若超出最小值,最回答最小值边界
        Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb;   

        % 计算适应度函数值
%         Positions(i, 2) = round(Positions(i, 2));
%         fitness = fical(Positions(i, :));
          fitness = fobj(Positions(i, :));
        % 更新 Alpha, Beta, Delta
        if fitness < Alpha_score           % 如果目标函数值小于Alpha狼的目标函数值
            Alpha_score = fitness;         % 则将Alpha狼的目标函数值更新为最优目标函数值
            Alpha_pos = Positions(i, :);   % 同时将Alpha狼的位置更新为最优位置
        end

        if fitness > Alpha_score && fitness < Beta_score   % 如果目标函数值介于于Alpha狼和Beta狼的目标函数值之间
            Beta_score = fitness;                          % 则将Beta狼的目标函数值更新为最优目标函数值
            Beta_pos = Positions(i, :);                    % 同时更新Beta狼的位置
        end

        if fitness > Alpha_score && fitness > Beta_score && fitness < Delta_score  % 如果目标函数值介于于Beta狼和Delta狼的目标函数值之间
            Delta_score = fitness;                                                 % 则将Delta狼的目标函数值更新为最优目标函数值
            Delta_pos = Positions(i, :);                                           % 同时更新Delta狼的位置
        end

    end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1564381.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大数据实验一,Hadoop安装及使用

目录 一&#xff0e;实验内容 二&#xff0e;实验目的 三&#xff0e;实验过程截图及说明 1、安装SSH&#xff0c;并配置SSH无密码登录 2、配置java环境 3.Hadoop的安装与配置 4、修改四个配置文件&#xff1a; 5、格式化HDFS的NameNode&#xff1a; 6、启动Hadoop 7、…

springcloud基本使用五(Gateway服务网关)

为什么使用网关&#xff1f; 权限控制&#xff1a;网关作为微服务入口&#xff0c;需要校验用户是是否有请求资格&#xff0c;如果没有则进行拦截。 路由和负载均衡&#xff1a;一切请求都必须先经过gateway&#xff0c;但网关不处理业务&#xff0c;而是根据某种规则&#xff…

[NSSRound#8 Basic]MyPage

[NSSRound#8 Basic]MyPage 打开页面后什么都没有 尝试使用php伪协议 //读取文件源码 filephp://filter/readconvert.base64-encode/resourceindex.php 显示&#xff1a;空白一片 filephp://filter/readconvert.base64-encode/resource/var/www/html/index.php 显示&#xff1…

C#.手术麻醉系统源码 手麻系统如何与医院信息系统进行集成?

C#.手术麻醉系统源码 手麻系统如何与医院信息系统进行集成&#xff1f; 手术麻醉系统与医院信息系统的集成是一个关键步骤&#xff0c;它有助于实现信息的共享和流程的协同&#xff0c;从而提高医疗服务的效率和质量。手麻系统与lis、his、pacs等系统的对接是医院信息化建设的重…

00150金融理论与实务考试分析

1.考试时间及题型 2.历年真题分析—单选题 3.历年真题分析—多选题

Redis windows设置自动开启服务

查看服务 WinR后输入services.msc进入到服务管理页面&#xff0c;查看是否存在Redis服务。 Windows版Redis解压后&#xff0c;是不会在服务中显示的&#xff0c;需要手动配置后才能在服务中看到 配置服务 在解压的Redis版本目录下&#xff0c;输入CMD&#xff0c;运行命…

使用阿里云试用Elasticsearch学习:1.1 基础入门——入门实践

阿里云试用一个月&#xff1a;https://help.aliyun.com/search/?kelastic&sceneall&page1 官网试用十五天&#xff1a;https://www.elastic.co/cn/cloud/cloud-trial-overview Elasticsearch中文文档&#xff1a;https://www.elastic.co/guide/cn/elasticsearch/guide…

Python PDF页面设置 -- 旋转页面、调整页面顺序

在将纸质文档扫描成PDF电子文档时&#xff0c;有时可能会出现页面方向翻转或者页面顺序混乱的情况。为了确保更好地浏览和查看PDF文件&#xff0c;本文将分享一个使用Python来旋转PDF页面或者调整PDF页面顺序的解决方案。 目录 使用Python旋转PDF页面 使用Python调整PDF页面…

RISC-V GNU Toolchain 工具链安装问题解决(含 stdio.h 问题解决)

我的安装过程主要参照 riscv-collab/riscv-gnu-toolchain 的官方 Readme 和这位佬的博客&#xff1a;RSIC-V工具链介绍及其安装教程 - 风正豪 &#xff08;大佬的博客写的非常详细&#xff0c;唯一不足就是 sudo make linux -jxx 是全部小写。&#xff09; 工具链前前后后我装了…

Docker、Kubernetes之间的区别

比较容器化工具&#xff1a;了解 Docker、Kubernetes 在应用程序部署和管理方面的差异。 基本概述 Docker 是一个流行的容器化平台&#xff0c;允许开发人员在容器中创建、部署和运行应用程序。 Docker 提供了一组工具和 API&#xff0c;使开发人员能够构建和管理容器化应用程…

C++算法补充---STL

这里写目录标题 CSTL容器字符串函数(string容器函数)字符串转字符 算法交换函数拿到容器或者数组的第一个最大&#xff08;小&#xff09;值元素的下标或者值排序函数求字符数组的有效长度atoi函数&#xff08;将字符串类型的数字转为真正的int型数字&#xff09;string转字符 …

代码随想录算法训练营三刷day42 | 动态规划之背包问题 416. 分割等和子集

三刷day42 416. 分割等和子集确定dp数组以及下标的含义确定递推公式dp数组如何初始化确定遍历顺序举例推导dp数组 416. 分割等和子集 题目链接 解题思路&#xff1a; 这是一维的背包问题 只有确定了如下四点&#xff0c;才能把01背包问题套到本题上来。 背包的体积为sum / 2背…

vscode shadertoy插件,非常方便的glsl着色器编写工具

很著名的shadertoy网站&#xff0c;集合了非常多大神利用数学写出美妙的shader效果。像shadertoy创始人之一的IQ大神它在这方面有很多的建树。他的利用光线步进和躁声可以创建很多不可思议的3D场景。 vscode有一件shadertoy的插件&#xff0c;安装后可以新建一个*.glsl文件&am…

分布式任务调度框架XXL-JOB

1、概述 XXL-JOB是一个分布式任务调度平台&#xff0c;其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线&#xff0c;开箱即用。 官方文档&#xff1a;https://www.xuxueli.com/xxl-job/#%E4%BA%8C%E3%80%81%E5%BF%AB%E9%80%9F%E…

安卓主板MT8390(Genio 700)_MTK联发科Linux开发板方案

MediaTek Genio 700 &#xff08;MT8390&#xff09;是一款高性能的边缘 AI 物联网平台&#xff0c;专为智能家居、互动零售、工业与商业应用而设计。提供快速响应的边缘计算能力、先进的多媒体功能、广泛的传感器和连接方式&#xff0c;且支持多任务操作系统。 MT8390安卓核心…

Java代码示例:演示多态特性及子类方法重写(day17)

java代码里面体现多态的特点&#xff1a; 第一步创建一个父类father&#xff0c; 然后创建子类subclasses&#xff0c; 最后创建一个DemoMulti, 上面的父类特有的方法不是私有的&#xff0c;因此子类能够继承。 新建一个父类方法Father 创建子类subclasses 在下面的代码中…

Aurora8b10b(2)上板验证

文章目录 前言一、AXI_Stream数据产生模块二、上板效果总结 前言 上一篇内容我们已经详细介绍了基于aurora8b10b IP核的设计&#xff0c;本文将基于此进一步完善并且进行上板验证。 设计思路及代码思路参考FPGA奇哥系列网课 一、AXI_Stream数据产生模块 AXIS协议是非常简单的…

单片机中的RAM vs ROM

其实&#xff0c;单片机就是个小计算机。大计算机少不了的数据存储系统&#xff0c;单片机一样有&#xff0c;而且往往和CPU集成在一起&#xff0c;显得更加小巧灵活。 直到90年代初&#xff0c;国内容易得到的单片机是8031&#xff1a;不带存储器的芯片&#xff0c;要想工作&a…

Linux网络编程一(协议、TCP协议、UDP、socket编程、TCP服务器端及客户端)

文章目录 协议1、分层模型结构2、网络应用程序设计模式3、ARP协议4、IP协议5、UDP协议6、TCP协议 Socket编程1、网络套接字(socket)2、网络字节序3、IP地址转换4、一系列函数5、TCP通信流程分析 第二次更新&#xff0c;自己再重新梳理一遍… 协议 协议&#xff1a;指一组规则&…

【tensorflow框架神经网络实现鸢尾花分类—优化器】

文章目录 1、前言2、神经网络参数优化器2.1、SGD2.2、SGDM2.3、Adagrad2.4、RMSProp2.5、Adam 3、实验对比不同优化器4、结果对比 1、前言 此前&#xff0c;在【tensorflow框架神经网络实现鸢尾花分类】一文中使用梯度下降算法SGD&#xff0c;对权重 w w w和偏置 b b b进行更新…