【面试八股总结】传输控制协议TCP(一)

news2024/11/23 15:08:13

一、什么是TCP协议

TCP是传输控制协议Transmission Control Protocol

TCP 是面向连接的、可靠的、基于字节流的传输层通信协议。

  • 面向连接的:每条TCP连接杜只能有两个端点,每一条TCP连接只能是点对点的(一对一)
  • 可靠的:可靠交付
  • 基于字节流的
    • TCP中的“流”的概念是流入或流出进程的字节序列
    • 基于字节流:虽然应用程序和TCP的交互是一次一个数据块,但TCP把应用程序交下来的数据仅仅看成是一连串的无结构的字节流
    • TCP不保证接收方应用程序收到的数据块和发送方应用程序所发出的数据块具有对应的大小关系,但是接收方应用程序收到的字节流必须和发送方应用程序发出的字节流完全一样。

二、TCP的连接建立

1. 三报文握手

  • TCP 建立连接的过程叫做握手。
  • 握手需要在客户和服务器之间交换三个 TCP 报文段。称之为三报文握手。
  • 三报文握手主要作用是为了确认通信双方的接收能力和发送能力是否正常、指定自己的初始化序列号为后面的可靠性传送做准备。
  • 采用三报文握手可以防止已失效的连接请求报文段突然又传送到了,因而产生错误。

1) 初始状态:

        客户端处于 closed(关闭) 状态,服务器处于 listen(监听) 状态。

2) 第一次握手:

        客户端给服务器发⼀个 SYN 报⽂,指明客户端的初始化序列号 ISN(c)。此时客户端处于SYN_SEND 状态

        该报文首部的同步位 SYN = 1,初始序号 seq = x,SYN = 1。

        该报文段不能携带数据,但要消耗掉⼀个序号。

3) 第二次握手:

        服务器收到客户端的 SYN 报文之后,以自己的 SYN 报⽂作为应答,并且指定自己的初始化序列号 ISN(s)。同时把客户端的 ISN + 1 作为 ACK 的值,表示已经收到了客户端的 SYN,此时服务器处于 SYN_RCVD 的状态

        在确认报文段中 SYN = 1,ACK = 1,确认号 ack = x + 1,初始序号 seq = y。

4) 第三次握手:

        客户端收到 SYN 报文之后,会发送⼀个 ACK 报⽂,把服务器的 ISN + 1 作为 ACK 的值,表示已经收到了服务端的 SYN 报⽂,此时客户端处于 ESTABLISHED 状态服务器收到 ACK 报⽂ 之后,也处于 ESTABLISHED 状态,此时,双方已建立起了连接。

        确认报文段 ACK = 1,确认号 ack = y + 1,序号 seq = x+1(初始为 seq = x,第⼆个报文段所以要+1)

        该ACK报文段可以携带数据,不携带数据则不消耗序号。

2. 为什么需要三次握手?

1) 阻止重复历史连接的初始化

        网络阻塞时,客户端向服务器发送两次SYN请求报文,旧的SYN报文先到达服务器,服务器回复一个ACK+SYN报文,客户端根据自身上下文判断这是一个历史连接(序列号过期或者超时),那么客户端就会发送RST报文给服务端,终止这次连接,服务器收到RST报文后,释放连接。这样新的SYN报文到达后,客户端与服务器就可以正常进行三次握手。

        若采用两次握手,服务器在收到SYN报文后,进入ESTABLISHED状态,服务器并不知道这是历史连接,直接与客户端建立并向客户端发送数据,造成资源浪费,但是客户端会判定这次连接是历史连接,忽略客户端确认消息,也不发送数据,服务端一直等待客户端发送数据。

2) 同步双方初始序列号

TCP协议的通信双方,都必须维护一个序列号,序列号是可靠传输的一个关键因素。

  • 接收端 -> 去除重复元素 ,并且按照序列号顺序接收数据
  • 发送端 -> 确认发送的数据包哪些已经被收到

三次握手确认初始化序列过程:

  • 第一次握手:客户端发送携带客户端初始化序列号的SYN报文;
  • 第二次握手:服务器发送携带服务器初始化序列号以及客户端初始化序列号+1的ACK + SYN应答报文,表示收到客户端SYN报文;
  • 第三次握手:客户端发送携带服务器初始化序列号+1的ACK应答报文。

        两次握手只能保证服务器成功接收了客户端的初始化序列号,但无法确认服务器的初始化序列号是否被成功接收。

3. 半连接队列

        半连接队列(SYN队列)⽤于存放已经发送了 SYN(同步)包,但还未完成三次握⼿的连接。服务器第⼀次收到客户端的 SYN 之后,就会处于 SYN_RCVD 状态,此时双⽅还没有完全建⽴其连接,服务器会把此种状态下请求连接放在⼀个队列⾥,我们把这种队列称之为半连接队列。

        全连接队列(Accept队列)⽤于存放已经完成三次握⼿,处于完全建⽴连接状态的连接。

4. 三次握手可以携带数据吗?

        三次握手中,第一次和第二次连接不可以携带数据,第三次连接可以携带数据。主要原因是如果第一次握手如果携带数据,会让服务器更加容易被攻击,但是第一次握手会消耗一个序列号,对于第三次握手,客户端已经处于ESTABLISHED状态,确认服务器接收、发送能力没有问题,可以发送数据。

5. SYN洪泛攻击

        SYN攻击指Client在短时间内伪造大量不存在的IP地址,并向Server不断发送SYN包,Server则回复确认包,等待Client确认。由于源地址不存在,因此Server需要不断重新发送直到超时,这些伪造的SYN包会长时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而导致网络拥塞甚至系统瘫痪。

        检测SYN攻击:在服务器上发现大量半连接状态,特别其源地址IP是随机的,基本确认为SYN攻击。Linux系统下可使用 netstats 命令检测:

netstat -n -p TCP | grep SYN_RECV

防御SYN攻击:

  • 缩短超时(SYN Timeout)时间

  • 增加最大半连接数

  • 过滤网关防护

  • SYN Cookies技术

 三、TCP的连接释放

1. 四报文挥手

  • 数据传输结束后,通信的双方都可释放连接。
  • TCP 连接释放过程是四报文握手。
  • TCP的半关闭(half-close):TCP提供了连接的⼀端在结束它的发送后还能接收来⾃另⼀端数据的能力
  • 客户端和服务器均可以主动发起挥手。

1) 初始状态:

        双方都处于 ESTABLISHED 状态 (假设客户端发起挥手)

 2) 第一次挥手:

        客户端发送⼀个 FIN 报⽂,报⽂中会指定⼀个序列号(FIN=1,序号seq=u)。此时客户端停止再发送数据,主动关闭TCP连接,进⼊FIN_WAIT1状态,等待服务端的确认。

 3) 第二次挥手:

        服务端收到以后,向客户端发送ACK应答报文,且把客户端的 序列号值+1 作为 ACK 报文的序列号值(ACK=1,确认号ack=u+1,序号seq=v),表明已经收到客户端的报文,服务器处于 CLOSE_WAIT 状态,此时TCP处于半关闭状态,客户端到服务端的连接释放。

        客户端收到服务端的确认后,进⼊FIN_WAIT2状态,等待服务端发出的连接释放报文段。

 4) 第三次挥手:

        如果服务器也想断开连接了,和客户端的第⼀次挥手⼀样,发出 FIN 连接释放报文(FIN=1,ACK=1,序号seq=w,确认号ack=u+1),且指定⼀个序列号。此时服务器处于LAST_ACK 的状态,等待客户端的确认。

 5) 第四次挥手

        客户端收到 FIN 之后,发送⼀个 ACK 报文作为应答,且把服务器的序列号值 +1 作为自己 ACK 报文的确认号值(ACK=1,seq=u+1,ack=w+1),客户端处于 TIME_WAIT 状态。此时TCP未释放掉,需要经过时间等待计时器设置的时间2MSL后,客户端才进入CLOSED状态。

        服务端收到 ACK 报文之后,就处于关闭连接了,处于 CLOSED 状态

2. 为什么需要四次挥手?

        关闭连接时,客户端发送FIN报⽂,表示其不再发送数据,但还可以接收数据。服务端收到FIN报文,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是⽤来同步的。但是关闭连接时,服务端可能还有数据需要处理和发送,所以先回⼀个ACK应答报文,等到其不再发送数据时,才发送 FIN报文给客户端表示同意关闭连接。

        服务端通常需要等待完成数据的发送和处理,所以服务端的ACK和FIN⼀般都会分开发送,因此需要四次挥手。

3. 为什么TIME_WAIT状态时间为2MSL?

1)MSL是Maximum Segment Lifetime,可译为“最长报文段寿命”,它是任何报文在网络上存在的最长时间,超过这个时间报文将被丢弃。

2)网络中可能存在发送方的数据包,当这些发送方的数据包被接收方处理后⼜会向对方发送响应,所以⼀来⼀回需要等待 2 倍的时间。

3)1 个 MSL 确保四次挥手中主动关闭方最后的 ACK 报文最终能达到对端;1 个 MSL 确保对端没有收到 ACK 重传的 FIN 报文可以到达

2MSL 的时间是从客户端接收到 FIN 后发送 ACK 开始计时的。如果在 TIME-WAIT 时间内,因为客户端的 ACK 没有传输到服务端,客户端又接收到了服务端重发的 FIN 报⽂,那么 2MSL 时间将重新计时

4. 为什么需要 TIME_WAIT 状态(2MSL状态)?     

1) 防止历史连接中的数据,被后面相同四元组的连接错误的接收

        如果网络出现拥塞或延迟,数据包可能会在网络中滞留⼀段时间,甚⾄超过了原始连接关闭的时间。如果没有 TIME_WAIT 状态,客户端直接进入到CLOSE状态,这些滞留的数据包可能会被传递给新连接,导致新连接的数据被旧连接的数据干扰。经过 2MSL 这个时间,足以让两个方向上的数据包都被丢弃,使得原来连接的数据包在网络都自然消失,再出现的数据包⼀定都是新建立连接所产生的。

2) 保证被动关闭连接的⼀方能被正确的关闭,即保证最后的 ACK 能让被动关闭方接收,从而帮助其正常关闭。

        如果最后的⼀次ACK报文丢失(第四次挥手),客户端没有 TIME_WAIT 状态,直接进⼊ClOSE,服务端⼀直在等待 ACK状态,⼀直没有等到,就会重发FIN报文,客户端已经进入到关闭状态,在收到服务端重传的 FIN 报⽂后, 就会回 RST 报文,服务端收到这个 RST 并将其解释为⼀个错误,。为了防止这种情况出现,客户端必须等待足够长的时间,确保服务端能够收到 ACK,如果服务端没有收到 ACK,那么就会触发 TCP 重传机制,服务端会重新发送⼀个 FIN,这样⼀去⼀来刚好两个 MSL 的时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1562176.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

iPhone设备中如何分析和解决应用程序崩溃日志的问题

​ 目录 如何在iPhone设备中查看崩溃日志 摘要 引言 导致iPhone设备崩溃的主要原因是什么? 使用克魔助手查看iPhone设备中的崩溃日志 奔溃日志分析 总结 摘要 本文介绍了如何在iPhone设备中查看崩溃日志,以便调查崩溃的原因。我们将展示三种不同的…

WPF学习笔记-FlowDocument实现表格单元格垂直居中以及边框设置

文章目录 概述一、基本方案1.1 添加Grid1.2 添加列1.3 添加行1.4 添加Grid的时候同时添加行和列1.5 添加元素1.6 获取指定单元格的元素1.7 添加TextBlock元素1.7.1 直接添加字符串1.7.2 添加Paragraph1.8 获取文本内容1.9 获取元素二、其他操作2.1 设置边框2.2 设置隔行颜色2.3…

深入剖析Xen与KVM虚拟化技术及其架构特点

引言 在现代数据中心与云计算领域中,虚拟化技术已经成为提升资源利用率、增强灵活性与可扩展性的重要基石。其中,Xen与KVM作为两种备受瞩目的开源虚拟化解决方案,分别以其独特的设计理念与技术创新引领着行业的进步与发展。Xen源自剑桥大学的…

Excel 隔几行批量插入空白行

例如如下表格,每隔6行插入一行数据: 1)第7个单元格输入1 2)选中6个单元格,然后双击填充数据: 3)F5 找到常量 Ctrlshift 复制插入的数据,然后选中数据 按F5,定位到空值

非关系型数据库之Redis配置与优化

一、关系数据库与非关系型数据库 1.1关系型数据库 关系型数据库是一个结构化的数据库,创建在关系模型(二维表格模型)基础上一般面向于记录。SQL语句(标准数据查询语言)就是一种基于关系型数据库的语言,用…

Unix 网络编程, Socket 以及bind(), listen(), accept(), connect(), read()write()五大函数简介

Unix网络编程是针对类Unix操作系统(包括Linux、BSD以及其他遵循POSIX标准的操作系统)进行网络通信开发的技术领域。网络编程涉及创建和管理网络连接、交换数据以及处理不同层次网络协议栈上的各种网络事件。在Unix环境中,网络编程通常涉及到以…

分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测

分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测 目录 分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测分类效果基本介绍模型描述程序设计参考资料…

Web实例_报表开发01-基于HTML进行报表呈现

Web实例_报表开发01-基于HTML进行报表呈现 报表开发是一种在利用了软件的基础上, 针对不同类型的报表, 进行开放的工作。 而以报表的方式, 将相关的内容、数值呈现出来的话, 则会起到更好的概况作用。 再加上, 报表开发工作是依托于计算机来完成的, 因此在效率、完整性等方面…

蓝桥杯-穿越雷区

题目要求 需求:从一个方格中A点,按要求移动到B点。 要求:每次只能走上下左右,每次只能走一次,每次是轮换穿越’‘,’-两个,否则就会能量失衡,发生爆炸。 使用的算法:这题典型的就是使…

6款Mac垃圾清理软件横评 Mac电脑清理软件哪个好 cleanmymac评测

鉴于苹果笔记本昂贵的硬盘价格,导致我们不得不定期清理自己的硬盘空间,释放给真正有用的各种程序等。 即便我们把程序安装到外置硬盘,但是程序运行时的缓存,仍然是在内置的硬盘中。 今天就让我们对比看看,目前市面上…

Linux如何连接github仓库

一.创建一个github账号 如何创建一个github账号 二.在github上创建一个仓库 登录上github后出现这个界面 然后点击左上角头像,在按照图片位置点击: 继续按照图片上的位置进行点击: 创建成功: 三.云主机连接Github仓库 1.在linux中…

openstack云计算(二)——使用Packstack安装器安装一体化OpenStack云平台

初步掌握OpenStack快捷安装的方法。掌握OpenStack图形界面的基本操作。 一【准备阶段】 (1)准备一台能够安装OpenStack的实验用计算机,建议使用VMware虚拟机。 (2)该计算机应安装CentOS 7,建议采用CentO…

探究云手机的海外原生IP优势

随着全球数字化进程的加速,企业越来越依赖于网络来扩展其业务。在这个数字时代,云手机作为一种创新的通信技术,已经成为了企业网络优化的重要组成部分。云手机支持海外原生IP的特性,为企业在国际市场上的拓展提供了全新的可能性。…

基础布局之LinearLayout线性布局

目录 一、基础属性二、重点属性2.1 weight(权重)属性:2.2 gravity 一、基础属性 LinearLayout默认方向是水平排放 属性作用android:id控件的ID,可以通过这个ID号来找到对应的控件android:layout_width控件的宽度android:layout_height控件的高度androi…

解析Apache Kafka:在大数据体系中的基本概念和核心组件

关联阅读博客文章:探讨在大数据体系中API的通信机制与工作原理 关联阅读博客文章:深入解析大数据体系中的ETL工作原理及常见组件 关联阅读博客文章:深度剖析:计算机集群在大数据体系中的关键角色和技术要点 关联阅读博客文章&a…

大数据系列 | Kafka架构分析及应用

大数据系列 | Kafka架构分析及应用 1. Kafka原理分析2. Kafka架构分析3. Kafka的应用3.1. 安装Zookeeper集群3.2. 安装Kafka集群3.3. 生产者和消费者使用3.3.1. 生产者使用3.3.1. 消费者使用 4. Kafka Controller控制器 1. Kafka原理分析 Kafka是一个高吞吐量、 持久性的分布式…

vue项目打包优化之-productionSourceMap设置

productionSourceMap 是一个用于配置生产环境下是否生成 source map 文件的选项。在 webpack 中,source map 文件是一种映射关系文件,可以将编译后的代码映射回原始源代码,方便开发者在调试时定位问题。 在生产环境中,通常不建议暴…

海康摄像头插件嵌入iframe时视频播放插件位置问题

参考:https://juejin.cn/post/6857670423971758094 原因:没有按照iframe相对位置计算视频插件位置。 解决: $(window).on(resize, resize);function resize(){// 解决iframe中嵌入海康插件初始化问题:// 1. 获取iframe相比于窗口的偏移量;c…

单V及多V感知在自动驾驶在恶劣环境条件下的感知提升方案

单V及多V感知在自动驾驶在恶劣环境条件下的感知提升方案 附赠自动驾驶学习资料和量产经验:链接 自动驾驶中的视觉感知是车辆在不同交通条件下安全、可持续地行驶的关键部分。然而,在大雨和雾霾等恶劣天气下,视觉感知性能受到多种降级效应的极…

2021-08-06

yarn的简介: Yarn是facebook发布的一款取代npm的包管理工具。 yarn的特点: 速度超快。 Yarn 缓存了每个下载过的包,所以再次使用时无需重复下载。 同时利用并行下载以最大化资源利用率,因此安装速度更快。超级安全。 在执行代码…