YOLOv5改进 | 低照度检测 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)

news2025/1/17 23:22:41

一、本文介绍

本文给大家带来的2024.3月份最新改进机制,由CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations论文提出的CPA-Enhancer链式思考网络CPA-Enhancer通过引入链式思考提示机制,实现了对未知退化条件下图像的自适应增强。该方法的核心在于能够利用CoT提示对图像退化进行动态分析和适应,从而显著提升物体检测性能。其适用的场景非常多低照度、图像去雾、雨天、雪天均有提点效果,本文内容由我独家整理!

 欢迎大家订阅我的专栏一起学习YOLO!  

 专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

一、本文介绍

二、原理介绍

三、核心代码

四、手把手教你添加本文机制 

4.1 修改一

4.2 修改二 

4.3 修改三 

五、CPA-Enhancer的yaml文件和运行记录

5.1 CPA-Enhancer的yaml文件

5.2 运行记录

五、本文总结


二、原理介绍

官方论文地址:官方论文地址点击此处即可跳转

官方代码地址:官方代码地址点击此处即可跳转


CPA-Enhancer的创新点和改进机制可以从以下几个方面进行概括:
1. 链式思考(CoT)提示:首次将链式思考(CoT)提示机制应用于物体检测任务中,通过逐步引导的方式处理未知退化图像的问题。
2. 自适应增强策略:提出了一种能够根据CoT提示动态调整其增强策略的自适应增强器,无需事先了解图像的退化类型。
3. 插件式模型设计:CPA-Enhancer设计为一个插件式模块,可以轻松地与任何现有的通用物体检测器集成,提升在退化图像上的检测性能。

改进机制
CoT提示生成模块(CGM):通过CoT提示生成模块动态生成与图像退化相关的上下文信息,使模型能够识别并适应不同类型的图像退化。
内容驱动提示块(CPB):利用内容驱动提示块加强输入特征与CoT提示之间的交互,允许模型根据退化的类型调整其增强策略。
端到端训练:CPA-Enhancer能够与目标检测器一起端到端地训练,无需单独的预训练过程或额外的监督信号。

总结
CPA-Enhancer通过引入链式思考提示机制,实现了对未知退化条件下图像的自适应增强。该方法的核心在于能够利用CoT提示对图像退化进行动态分析和适应,从而显著提升物体检测性能。其插件式设计使其可以无缝集成到现有的检测框架中,为处理实际应用中遇到的各种退化条件提供了一种有效的解决方案。通过实验验证,CPA-Enhancer不仅在物体检测任务上设立了新的性能标准,还证明了其对其他下游视觉任务性能的提升作用,展示了广泛的应用潜力。


三、核心代码

核心代码的使用方式看章节四!

import torch
import torch.nn as nn
import torch.nn.functional as F
import numbers
from einops import rearrange
from einops.layers.torch import Rearrange

__all__ = ['CPA_arch']

class RFAConv(nn.Module):  # 基于Group Conv实现的RFAConv
    def __init__(self, in_channel, out_channel, kernel_size=3, stride=1):
        super().__init__()
        self.kernel_size = kernel_size
        self.get_weight = nn.Sequential(nn.AvgPool2d(kernel_size=kernel_size, padding=kernel_size // 2, stride=stride),
                                        nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=1,
                                                  groups=in_channel, bias=False))
        self.generate_feature = nn.Sequential(
            nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=kernel_size, padding=kernel_size // 2,
                      stride=stride, groups=in_channel, bias=False),
            nn.BatchNorm2d(in_channel * (kernel_size ** 2)),
            nn.ReLU())

        self.conv = nn.Sequential(nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=kernel_size),
                                  nn.BatchNorm2d(out_channel),
                                  nn.ReLU())

    def forward(self, x):
        b, c = x.shape[0:2]
        weight = self.get_weight(x)
        h, w = weight.shape[2:]
        weighted = weight.view(b, c, self.kernel_size ** 2, h, w).softmax(2)  # b c*kernel**2,h,w ->  b c k**2 h w
        feature = self.generate_feature(x).view(b, c, self.kernel_size ** 2, h,
                                                w)  # b c*kernel**2,h,w ->  b c k**2 h w   获得感受野空间特征
        weighted_data = feature * weighted
        conv_data = rearrange(weighted_data, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size,
                              # b c k**2 h w ->  b c h*k w*k
                              n2=self.kernel_size)
        return self.conv(conv_data)

class Downsample(nn.Module):
    def __init__(self, n_feat):
        super(Downsample, self).__init__()

        self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat // 2, kernel_size=3, stride=1, padding=1, bias=False),
                                  nn.PixelUnshuffle(2))

    def forward(self, x):
        return self.body(x)

class Upsample(nn.Module):
    def __init__(self, n_feat):
        super(Upsample, self).__init__()

        self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat * 2, kernel_size=3, stride=1, padding=1, bias=False),
                                  nn.PixelShuffle(2))

    def forward(self, x):  # (b,c,h,w)
        return self.body(x)  # (b,c/2,h*2,w*2)

class SpatialAttention(nn.Module):
    def __init__(self):
        super(SpatialAttention, self).__init__()
        self.sa = nn.Conv2d(2, 1, 7, padding=3, padding_mode='reflect', bias=True)

    def forward(self, x):  # x:[b,c,h,w]
        x_avg = torch.mean(x, dim=1, keepdim=True)  # (b,1,h,w)
        x_max, _ = torch.max(x, dim=1, keepdim=True)  # (b,1,h,w)
        x2 = torch.concat([x_avg, x_max], dim=1)  # (b,2,h,w)
        sattn = self.sa(x2)  # 7x7conv (b,1,h,w)
        return sattn * x

class ChannelAttention(nn.Module):
    def __init__(self, dim, reduction=8):
        super(ChannelAttention, self).__init__()
        self.gap = nn.AdaptiveAvgPool2d(1)
        self.ca = nn.Sequential(
            nn.Conv2d(dim, dim // reduction, 1, padding=0, bias=True),
            nn.ReLU(inplace=True),  # Relu
            nn.Conv2d(dim // reduction, dim, 1, padding=0, bias=True),
        )

    def forward(self, x):  # x:[b,c,h,w]
        x_gap = self.gap(x)  #  [b,c,1,1]
        cattn = self.ca(x_gap)  # [b,c,1,1]
        return cattn * x

class Channel_Shuffle(nn.Module):
    def __init__(self, num_groups):
        super(Channel_Shuffle, self).__init__()
        self.num_groups = num_groups

    def forward(self, x):
        batch_size, chs, h, w = x.shape
        chs_per_group = chs // self.num_groups
        x = torch.reshape(x, (batch_size, self.num_groups, chs_per_group, h, w))
        # (batch_size, num_groups, chs_per_group, h, w)
        x = x.transpose(1, 2)  # dim_1 and dim_2
        out = torch.reshape(x, (batch_size, -1, h, w))
        return out

class TransformerBlock(nn.Module):
    def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type):
        super(TransformerBlock, self).__init__()

        self.norm1 = LayerNorm(dim, LayerNorm_type)
        self.attn = Attention(dim, num_heads, bias)
        self.norm2 = LayerNorm(dim, LayerNorm_type)
        self.ffn = FeedForward(dim, ffn_expansion_factor, bias)

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.ffn(self.norm2(x))
        return x

def to_3d(x):
    return rearrange(x, 'b c h w -> b (h w) c')

def to_4d(x, h, w):
    return rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)

class BiasFree_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(BiasFree_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        sigma = x.var(-1, keepdim=True, unbiased=False)
        return x / torch.sqrt(sigma + 1e-5) * self.weight

class WithBias_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(WithBias_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        device = x.device
        mu = x.mean(-1, keepdim=True)
        sigma = x.var(-1, keepdim=True, unbiased=False)
        result = (x - mu) / torch.sqrt(sigma + 1e-5) * self.weight.to(device) + self.bias.to(device)
        return result

class LayerNorm(nn.Module):
    def __init__(self, dim, LayerNorm_type):
        super(LayerNorm, self).__init__()
        if LayerNorm_type == 'BiasFree':
            self.body = BiasFree_LayerNorm(dim)
        else:
            self.body = WithBias_LayerNorm(dim)

    def forward(self, x):
        h, w = x.shape[-2:]
        return to_4d(self.body(to_3d(x)), h, w)

class FeedForward(nn.Module):
    def __init__(self, dim, ffn_expansion_factor, bias):
        super(FeedForward, self).__init__()

        hidden_features = int(dim * ffn_expansion_factor)

        self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)

        self.dwconv = nn.Conv2d(hidden_features * 2, hidden_features * 2, kernel_size=3, stride=1, padding=1,
                                groups=hidden_features * 2, bias=bias)

        self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)

    def forward(self, x):
        device = x.device
        self.project_in = self.project_in.to(device)
        self.dwconv = self.dwconv.to(device)
        self.project_out = self.project_out.to(device)
        x = self.project_in(x)
        x1, x2 = self.dwconv(x).chunk(2, dim=1)
        x = F.gelu(x1) * x2
        x = self.project_out(x)
        return x

class Attention(nn.Module):
    def __init__(self, dim, num_heads, bias):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1, dtype=torch.float32), requires_grad=True)
        self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
        self.qkv_dwconv = nn.Conv2d(dim * 3, dim * 3, kernel_size=3, stride=1, padding=1, groups=dim * 3,
                                    bias=bias)
        self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)

    def forward(self, x):
        b, c, h, w = x.shape
        device = x.device
        self.qkv = self.qkv.to(device)
        self.qkv_dwconv = self.qkv_dwconv.to(device)
        self.project_out = self.project_out.to(device)
        qkv = self.qkv(x)
        qkv = self.qkv_dwconv(qkv)
        q, k, v = qkv.chunk(3, dim=1)

        q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)

        q = torch.nn.functional.normalize(q, dim=-1)
        k = torch.nn.functional.normalize(k, dim=-1)

        attn = (q @ k.transpose(-2, -1)) * self.temperature.to(device)
        attn = attn.softmax(dim=-1)

        out = (attn @ v)

        out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)

        out = self.project_out(out)
        return out

class resblock(nn.Module):
    def __init__(self, dim):
        super(resblock, self).__init__()
        # self.norm = LayerNorm(dim, LayerNorm_type='BiasFree')

        self.body = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False),
                                  nn.PReLU(),
                                  nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False))

    def forward(self, x):
        res = self.body((x))
        res += x
        return res

#########################################################################
# Chain-of-Thought Prompt Generation Module (CGM)
class CotPromptParaGen(nn.Module):
    def __init__(self,prompt_inch,prompt_size, num_path=3):
        super(CotPromptParaGen, self).__init__()

        # (128,32,32)->(64,64,64)->(32,128,128)
        self.chain_prompts=nn.ModuleList([
            nn.ConvTranspose2d(
                in_channels=prompt_inch if idx==0 else prompt_inch//(2**idx),
                out_channels=prompt_inch//(2**(idx+1)),
                kernel_size=3, stride=2, padding=1
            ) for idx in range(num_path)
        ])
    def forward(self,x):
        prompt_params = []
        prompt_params.append(x)
        for pe in self.chain_prompts:
            x=pe(x)
            prompt_params.append(x)
        return prompt_params

#########################################################################
# Content-driven Prompt Block (CPB)
class ContentDrivenPromptBlock(nn.Module):
    def __init__(self, dim, prompt_dim, reduction=8, num_splits=4):
        super(ContentDrivenPromptBlock, self).__init__()
        self.dim = dim
        self.num_splits = num_splits
        self.pa2 = nn.Conv2d(2 * dim, dim, 7, padding=3, padding_mode='reflect', groups=dim, bias=True)
        self.sigmoid = nn.Sigmoid()
        self.conv3x3 = nn.Conv2d(prompt_dim, prompt_dim, kernel_size=3, stride=1, padding=1, bias=False)
        self.conv1x1 = nn.Conv2d(dim, prompt_dim, kernel_size=1, stride=1, bias=False)
        self.sa = SpatialAttention()
        self.ca = ChannelAttention(dim, reduction)
        self.myshuffle = Channel_Shuffle(2)
        self.out_conv1 = nn.Conv2d(prompt_dim + dim, dim, kernel_size=1, stride=1, bias=False)
        self.transformer_block = [
            TransformerBlock(dim=dim // num_splits, num_heads=1, ffn_expansion_factor=2.66, bias=False,
                             LayerNorm_type='WithBias') for _ in range(num_splits)]

    def forward(self, x, prompt_param):
        # latent: (b,dim*8,h/8,w/8)  prompt_param3: (1, 256, 16, 16)
        x_ = x
        B, C, H, W = x.shape
        cattn = self.ca(x)  # channel-wise attn
        sattn = self.sa(x)  # spatial-wise attn
        pattn1 = sattn + cattn
        pattn1 = pattn1.unsqueeze(dim=2)  # [b,c,1,h,w]
        x = x.unsqueeze(dim=2)  # [b,c,1,h,w]
        x2 = torch.cat([x, pattn1], dim=2)  #  [b,c,2,h,w]
        x2 = Rearrange('b c t h w -> b (c t) h w')(x2)  # [b,c*2,h,w]
        x2 = self.myshuffle(x2)  # [c1,c1_att,c2,c2_att,...]
        pattn2 = self.pa2(x2)
        pattn2 = self.conv1x1(pattn2)  # [b,prompt_dim,h,w]
        prompt_weight = self.sigmoid(pattn2)  # Sigmod

        prompt_param = F.interpolate(prompt_param, (H, W), mode="bilinear")
        # (b,prompt_dim,prompt_size,prompt_size) -> (b,prompt_dim,h,w)
        prompt = prompt_weight * prompt_param
        prompt = self.conv3x3(prompt)  # (b,prompt_dim,h,w)

        inter_x = torch.cat([x_, prompt], dim=1)  # (b,prompt_dim+dim,h,w)
        inter_x = self.out_conv1(inter_x)  # (b,dim,h,w) dim=64
        splits = torch.split(inter_x, self.dim // self.num_splits, dim=1)

        transformered_splits = []
        for i, split in enumerate(splits):
            transformered_split = self.transformer_block[i](split)
            transformered_splits.append(transformered_split)
        result = torch.cat(transformered_splits, dim=1)
        return result

#########################################################################
# CPA_Enhancer
class CPA_arch(nn.Module):
    def __init__(self, c_in=3, c_out=3, dim=4, prompt_inch=128, prompt_size=32):
        super(CPA_arch, self).__init__()
        self.conv0 = RFAConv(c_in, dim)
        self.conv1 = RFAConv(dim, dim)
        self.conv2 = RFAConv(dim * 2, dim * 2)
        self.conv3 = RFAConv(dim * 4, dim * 4)
        self.conv4 = RFAConv(dim * 8, dim * 8)
        self.conv5 = RFAConv(dim * 8, dim * 4)
        self.conv6 = RFAConv(dim * 4, dim * 2)
        self.conv7 = RFAConv(dim * 2, c_out)

        self.down1 = Downsample(dim)
        self.down2 = Downsample(dim * 2)
        self.down3 = Downsample(dim * 4)

        self.prompt_param_ini = nn.Parameter(torch.rand(1, prompt_inch, prompt_size, prompt_size)) # (b,c,h,w)
        self.myPromptParamGen = CotPromptParaGen(prompt_inch=prompt_inch,prompt_size=prompt_size)
        self.prompt1 = ContentDrivenPromptBlock(dim=dim * 2 ** 1, prompt_dim=prompt_inch // 4, reduction=8)  # !!!!
        self.prompt2 = ContentDrivenPromptBlock(dim=dim * 2 ** 2, prompt_dim=prompt_inch // 2, reduction=8)
        self.prompt3 = ContentDrivenPromptBlock(dim=dim * 2 ** 3, prompt_dim=prompt_inch , reduction=8)

        self.up3 = Upsample(dim * 8)
        self.up2 = Upsample(dim * 4)
        self.up1 = Upsample(dim * 2)

    def forward(self, x):  # (b,c_in,h,w)

        prompt_params = self.myPromptParamGen(self.prompt_param_ini)
        prompt_param1 = prompt_params[2] # [1, 64, 64, 64]
        prompt_param2 = prompt_params[1]  # [1, 128, 32, 32]
        prompt_param3 = prompt_params[0]  # [1, 256, 16, 16]
        x0 = self.conv0(x)  # (b,dim,h,w)
        x1 = self.conv1(x0)  # (b,dim,h,w)
        x1_down = self.down1(x1)  # (b,dim,h/2,w/2)
        x2 = self.conv2(x1_down)  # (b,dim,h/2,w/2)
        x2_down = self.down2(x2)
        x3 = self.conv3(x2_down)
        x3_down = self.down3(x3)
        x4 = self.conv4(x3_down)
        device = x4.device
        self.prompt1 = self.prompt1.to(device)
        self.prompt2 = self.prompt2.to(device)
        self.prompt3 = self.prompt3.to(device)
        x4_prompt = self.prompt3(x4, prompt_param3)
        x3_up = self.up3(x4_prompt)
        x5 = self.conv5(torch.cat([x3_up, x3], 1))
        x5_prompt = self.prompt2(x5, prompt_param2)
        x2_up = self.up2(x5_prompt)
        x2_cat = torch.cat([x2_up, x2], 1)
        x6 = self.conv6(x2_cat)
        x6_prompt = self.prompt1(x6, prompt_param1)
        x1_up = self.up1(x6_prompt)
        x7 = self.conv7(torch.cat([x1_up, x1], 1))
        return x7



if __name__ == "__main__":
    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)
    out = CPA_arch(3, 3, 4)
    out = out(image)
    print(out.size())




四、手把手教你添加本文机制 

4.1 修改一

第一还是建立文件,我们找到如下yolov5-master/models文件夹下建立一个目录名字呢就是'modules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'yolov5-master/models/yolo.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)!

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!

到此就修改完成了,大家可以复制下面的yaml文件运行,无需修改parse_model方法。。


五、CPA-Enhancer的yaml文件和运行记录

5.1 CPA-Enhancer的yaml文件

注意本文的代码计算量很高但是参数量不高,所以大家可能运行失败因为电脑算力不足而导致!

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32


# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, CPA_arch, []],  # 0-P1/2
   [-1, 1, Conv, [64, 6, 2, 2]],  # 1-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 2-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 4-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 6-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 8-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]]  # 10
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 14

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 15], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 21 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 11], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 24 (P5/32-large)

   [[18, 21, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

5.2 运行记录


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

  专栏回顾:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1560058.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Proteus 12V to 5V buck电路仿真练习及遇到的一些问题汇总

基础电路仿真实验记录贴!!!如有写的不对的地方欢迎交流指正!!! 平台:PC win10 软件:Proteus8.10 仿真目标:buck降压电路(PWM控制输出电压) 写在…

《Lost in the Middle: How Language Models Use Long Contexts》AI 解读

作者:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

MySQL核心命令详解与实战,一文掌握MySQL使用

文章目录 文章简介演示库表创建数据库表选择数据库删除数据库创建表删除表向表中插入数据更新数据删除数据查询数据WHERE 操作符聚合函数LIKE 子句分组 GROUP BY HAVINGORDER BY(排序) 语句LIMIT 操作符 分页查询多表查询-联合查询 UNION 操作符多表查询-连接的使用-JOIN语句编…

选择排序及其优化

目录 思想: 代码: 代码优化: 需要注意的特殊情况: 可能出现的所有特殊情况: 优化完成代码: 思想: 每一次遍历数组,选择出最大或最小的数,将其与数组末尾或首位进行…

Oracle Solaris 11.3开工失败问题处理记录

1、故障现像 起初是我这有套RAC有点问题,我想重启1个节点,结果发现重启后该节点的IP能PING通,但SSH连不上去,对应的RAC服务也没有自动启动。 操作系统是solaris 11.3。由于该IP对应的主机是LDOM,于是我去主域上telnet…

汇编语言第四版-王爽第2章 寄存器

二进制左移四位,相当于四进制左移一位。 debug命令实操,win11不能启动,需要配置文件 Windows64位系统进入debug模式_window10系统64位怎么使用debugger-CSDN博客

扫雷(蓝桥杯)

题目描述 小明最近迷上了一款名为《扫雷》的游戏。其中有一个关卡的任务如下, 在一个二维平面上放置着 n 个炸雷,第 i 个炸雷 (xi , yi ,ri) 表示在坐标 (xi , yi) 处存在一个炸雷,它的爆炸范围是以半径为 ri 的一个圆。 为了顺利通过这片土…

开源博客项目Blog .NET Core源码学习(13:App.Hosting项目结构分析-1)

开源博客项目Blog的App.Hosting项目为MVC架构的,主要定义或保存博客网站前台内容显示页面及后台数据管理页面相关的控制器类、页面、js/css/images文件,页面使用基于layui的Razor页面(最早学习本项目就是想学习layui的用法,不过最…

网络安全 | 网络攻击介绍

关注wx:CodingTechWork 网络攻击 网络攻击定义 以未经授权的方式访问网络、计算机系统或数字设备,故意窃取、暴露、篡改、禁用或破坏数据、应用程序或其他资产的行为。威胁参与者出于各种原因发起网络攻击,从小额盗窃发展到战争行为。采用各…

C语言自定义类型

本篇文章主要介绍三种自定义类型,分别是:结构体、联合体、枚举。 一.结构体 1.结构体类型的声明 直接举一个例子: //一本书 struct s {char name[10]; //名称char a; //作者int p; //价格 }; 2.特殊的声明 结构体也可以不写结构体标…

NVIDIA Jetson Xavier NX入门-镜像为jetpack5(3)——pytorch和torchvision安装

NVIDIA Jetson Xavier NX入门-镜像为jetpack5(3)——pytorch和torchvision安装 镜像为jetpack5系列: NVIDIA Jetson Xavier NX入门-镜像为jetpack5(1)——镜像烧写 NVIDIA Jetson Xavier NX入门-镜像为jetpack5&#…

医院陪诊管理系统(源码+文档)

TOC) 文件包含内容 1、搭建视频 2、流程图 3、开题报告 4、数据库 5、参考文献 6、服务器接口文件 7、接口文档 8、任务书 9、功能图 10、环境搭建软件 11、十六周指导记录 12、答辩ppt模板 13、技术详解 14、前端后台管理(管理端程序) 15、项目截图 1…

CCIE-07-OSPF_TS

目录 实验条件网络拓朴逻辑拓扑实现目标 环境配置开始Troubleshooting问题1. R22的e0/0接口配置了网络类型问题2. R22和R21之间的IP地址子网掩码长度不一致问题3. R21的e0/0口配置了被动接口问题4. R3配置了不一致的hello-time问题5. R21配置了max-metric导致路由无效问题6. R3…

LLM大模型可视化-以nano-gpt为例

内容整理自:LLM 可视化 --- LLM Visualization (bbycroft.net)https://bbycroft.net/llm Introduction 介绍 Welcome to the walkthrough of the GPT large language model! Here well explore the model nano-gpt, with a mere 85,000 parameters. 欢迎来到 GPT 大…

GPUPixel:以光速打造美丽,开源跨平台的实时美颜滤镜库,赋能您的应用尽显商业级影像魅力!- 精选真开源,释放新价值。

GPUPixel:以光速打造美丽,开源跨平台的实时美颜滤镜库,赋能您的应用尽显商业级影像魅力!- 精选真开源,释放新价值。 概览 GPUPixel是一款精心设计并采用现代C11标准编写的高性能图像和视频AI美颜效果处理库,其核心价值…

vue 视频添加水印

1.需求背景 其实腾讯云点播的api也支持视频水印,但是只有单个水印,大概效果是这样子的,不满足我们的需求,我们的需求是需要视频中都是水印。 腾讯云点播水印 项目需求的水印(主要是防录屏,最后的实现效果是这样&…

【前端面试3+1】06继承方式及优缺点、缓存策略、url输入到渲染全过程、【二叉树中序遍历】

一、继承有哪些方式?以及优缺点 继承的方式包括原型链继承、构造函数继承、组合继承、原型式继承、寄生式继承和组合式继承。 1.原型链继承: 实现方式:将子类的原型指向父类的实例来实现继承。优点:简单易懂,代码量少。…

整数删除,蓝桥杯训练题

题目描述: 给定一个长度为 N 的整数数列:A1,A2,…,AN。 你要重复以下操作 K 次: 每次选择数列中最小的整数(如果最小值不止一个,选择最靠前的),将其删除,并把与它相邻的整数加上被删除的数值。 …

精读 Generating Mammography Reports from Multi-view Mammograms with BERT

精读(非常推荐) Generating Mammography Reports from Multi-view Mammograms with BERT(上) 这里的作者有个叫 Ilya 的吓坏我了 1. Abstract Writing mammography reports can be errorprone and time-consuming for radiolog…

使用STM32 MCU模拟实现PPS+TOD授时信号

简介 PPSTOD是授时信号的一种,用来传递准确的时间信息。 PPS,Pulse Per Second,是每秒一次的脉冲信号,其上升沿表示整秒的时刻。TOD,Time of Day,是时间信息。是跟随在每个PPS信号后的由串口发出的一句报…