软件杯 深度学习YOLOv5车辆颜色识别检测 - python opencv

news2025/4/8 5:27:46

文章目录

  • 1 前言
  • 2 实现效果
  • 3 CNN卷积神经网络
  • 4 Yolov5
  • 6 数据集处理及模型训练
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习YOLOv5车辆颜色识别检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 CNN卷积神经网络

卷积神经网络(CNN),是由多层卷积结构组成的一种神经网络。卷积结构可以减少网络的内存占用、参数和模型的过拟合。卷积神经网络是一种典型的深度学习算法。广泛应用于视觉处理和人工智能领域,特别是在图像识别和人脸识别领域。与完全连接的神经网络相比,CNN输入是通过交换参数和局部感知来提取图像特征的图像。卷积神经网络是由输入层、卷积层、池化层、全连接层和输出层五层结构组成。其具体模型如下图所示。
在这里插入图片描述

(1)输入层(Input
layer):输入层就是神经网络的输入端口,就是把输入传入的入口。通常传入的图像的R,G,B三个通道的数据。数据的输入一般是多维的矩阵向量,其中矩阵中的数值代表的是图像对应位置的像素点的值。

(2)卷积层(Convolution layer):卷积层在CNN中主要具有学习功能,它主要提取输入的数据的特征值。

(3)池化层(Pooling
layer):池化层通过对卷积层的特征值进行压缩来获得自己的特征值,减小特征值的矩阵的维度,减小网络计算量,加速收敛速度可以有效避免过拟合问题。

(4)全连接层(Full connected
layer):全连接层主要实现是把经过卷积层和池化层处理的数据进行集合在一起,形成一个或者多个的全连接层,该层在CNN的功能主要是实现高阶推理计算。

(5)输出层(Output layer):输出层在全连接层之后,是整个神经网络的输出端口即把处理分析后的数据进行输出。

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')

flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

4 Yolov5

简介

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):
      stride = None  # strides computed during build
      onnx_dynamic = False  # ONNX export parameter
        
      def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
          super().__init__()
          self.nc = nc  # number of classes
          self.no = nc + 5  # number of outputs per anchor
          self.nl = len(anchors)  # number of detection layers
          self.na = len(anchors[0]) // 2  # number of anchors
          self.grid = [torch.zeros(1)] * self.nl  # init grid
          self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
          self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
          self.inplace = inplace  # use in-place ops (e.g. slice assignment)
        
      def forward(self, x):
          z = []  # inference output
          for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
              bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
              x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
        
    
              if not self.training:  # inference
                  if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                      self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
        
                  y = x[i].sigmoid()
                  if self.inplace:
                      y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                  else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                  z.append(y.view(bs, -1, self.no))
        
          return x if self.training else (torch.cat(z, 1), x)
    
      def _make_grid(self, nx=20, ny=20, i=0):
          d = self.anchors[i].device
          if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
          else:
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
          grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
          anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
              .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
          return grid, anchor_grid
    

6 数据集处理及模型训练

数据集准备

由于目前汽车颜色图片并没有现成的数据集,我们使用Python爬虫利用关键字在互联网上获得的图片数据,编写程序爬了1w张,筛选后用于训练。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述
后续课查看其他标注教程,不难。

开始训练模型

处理好数据集和准备完yaml文件,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数
在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1559649.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

nginx的缓存和gzip

nginx的缓存 缓存的基本思想是利用客户端访问的时间局限性,将客户端访问过的内容做一个副本,在一定时间内存放到本地,当改数据下次被访问时,不必连接到后端服务器反复去查询数据,而是由本地保存的副本响应数据。 保存…

服务器固定IP(固定出口IP)去访问外部服务

背景 服务器上有多个IP,那么在服务器请求外部服务的时候,到底是使用哪个IP呢?如果要使用特定的IP去请求外部服务,该如何设置呢? 分析 遇到一个实际的场景: 我们产品和其他产品联调,我们的服务…

【A-010】基于SSH的宠物狗商城系统(含论文)

【A-010】基于SSH的宠物狗商城系统(含论文) 开发环境: Eclipse/MyEclipse、Tomcat8、Jdk1.8 数据库: MySQL 项目介绍: 在科学技术飞速发展的今天,互联网成为人们快速获取、发布和传递信息的重要渠道&am…

【Docker笔记01】【基础内容】

一、前言 本系列是根据 B 站 尚硅谷 Docker 视频 学习记录笔记。因为没有视频课件,部分内容摘自 https://www.yuque.com/tmfl/cloud/dketq0。 本系列仅为自身学习笔记记录使用,记录存在偏差,推荐阅读原视频内容或本文参考笔记。 二、Docker…

基于springboot实现房屋租赁系统项目【项目源码+论文说明】

基于springboot实现房屋租赁系统演示 摘要 社会的发展和科学技术的进步,互联网技术越来越受欢迎。网络计算机的生活方式逐渐受到广大人民群众的喜爱,也逐渐进入了每个用户的使用。互联网具有便利性,速度快,效率高,成本…

QT-左框选项卡软件界面框架

QT-左框选项卡软件界面框架 一、演示效果二、关键程序三、下载链接 一、演示效果 二、关键程序 #include <QTextBrowser> #include <QLabel> #include <QPushButton> #include <QSpacerItem> #include <QToolButton> #include <QDebug> #i…

浮点数(小数)在计算机中如何用二进制存储?

【版权声明】未经博主同意&#xff0c;谢绝转载&#xff01;&#xff08;请尊重原创&#xff0c;博主保留追究权&#xff09; https://blog.csdn.net/m0_69908381/article/details/137182814 出自【进步*于辰的博客】 注&#xff1a;为了阐述更加严谨&#xff0c;本篇文章中将使…

【练习】滑动窗口思想

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f525;个人专栏&#xff1a;Java算法&#x1f4d5;格言&#xff1a;那些在暗处执拗生长的花&#xff0c;终有一日会馥郁传香欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 1.长度最小的子数组 题目解析 讲解 代码实现 2.无…

微信小程序(黑马优购:登录)

1.点击结算进行条件判断 user.js //数据 state: () >({ // address: {} address: JSON.parse(uni.getStorageSync(address) || {}), token: }), my-settle.vue computed: { ...mapGetters(m_cart,[checkedCount,total,checkedGoodsAmount]), …

MySQL经验分享:Shell开发问题

背景 之前整理过Python连接使用MySQL的经验&#xff0c;链接如下&#xff1a; pymysql封装总结_pymysql封装类-CSDN博客 相比高级语言&#xff0c;Shell与MySQL开发使用相对会更麻烦一些&#xff1b;由于 shell是linux命令集的概称&#xff0c;是属于命令行的人机界面。Shel…

机器视觉学习(八)—— 阈值化

目录 一、阈值化 二、二值化和示例 2.1 二值化 2.2 示例代码 一、阈值化 OpenCV是一个开源的计算机视觉库&#xff0c;可以用于图像处理和计算机视觉任务。阈值化是图像处理中的一种常见操作&#xff0c;可以将图像的像素值分成两个或多个不同的类别&#xff0c;通常是黑色…

python统计分析——双样本均值比较

参考资料&#xff1a;python统计分析【托马斯】 1、配对样本t检验 在进行两组数据之间的比较时&#xff0c;有两种情况必须区分开。在第一种情况中&#xff0c;同一对象在不同时候的两个记录值进行相互比较。例如&#xff0c;用学生们进入初中时的身高和他们一年后的身高&…

wails 创建Go 项目

##wails是一个可以让go和web技术编写桌面应用#安装wails go install github.com/wailsapp/wails/v2/cmd/wailslatest#检查环境 wails doctor 创建项目wails init -n AuxiliaryTools -t vue-ts拉取go.mod的依赖项 go mod tidy进入 frontend 前端安装依赖项npm install /pnpm ins…

GitHub - 使用SSH进行连接(续)

文章目录 前言开发环境SSH源码获取SSH源码分析最后 前言 上篇文章中提出了存在一些默认密钥文件会被SSH自动添加的猜测&#xff0c;现在我们通过一些分析来验证这个猜测。 开发环境 MacOS: 14.3.1SSH: OpenSSH_9.4p1 SSH源码获取 该怎么验证这个猜测呢&#xff1f;有个方法…

QT初识(2)

QT初识&#xff08;2&#xff09; 创建好项目之后&#xff0c;多了些什么东西&#xff1f;main.cppwidget.hwidget.cppwidget.ui.pro项目工程文件 我们今天来继续了解QT。如果没看过上一次QT初识的小伙伴可以点击这里&#xff1a; https://blog.csdn.net/qq_67693066/article/d…

ADB(Android Debug Bridge)操作命令详解及示例

ADB&#xff08;Android Debug Bridge&#xff09;是一个强大的命令行工具&#xff0c;它是Android SDK的一部分&#xff0c;主要用于Android设备&#xff08;包括真实手机和平板电脑以及模拟器&#xff09;的调试、系统控制和应用程序部署。 下面是一些ADB的常用命令&#xff…

全国植被覆盖度VFC逐月数据/NDVI/净初级生产力NPP/植被类型​

引言 植被覆盖度是指植被&#xff08;包括叶、茎、枝&#xff09;在地面的垂直投影面积占统计区总面积的百分比。是刻画地表植被覆盖的一个重要参数, 也是指示生态环境变化的重要指标之一。 正文 数据简介 容易与植被覆盖度混淆的概念是植被盖度&#xff0c;植被盖度是指植被冠…

腾讯云轻量服务器8核16G服务器价格1668元一年送3个月,18M大带宽

腾讯云轻量应用服务器8核16G配置租用优惠价格1668元15个月&#xff0c;买一年送3个月&#xff0c;配置为&#xff1a;轻量8核16G18M、270GB SSD盘、3500GB月流量、18M带宽&#xff0c;腾讯云优惠活动 yunfuwuqiba.com/go/txy 活动链接打开如下图&#xff1a; 腾讯云8核16G服务器…

复写零->C语言和JAVA版本的双指针解法

使用C语言和JAVA语言版本双指针来解决复写零问题 力扣链接:https://leetcode.cn/problems/duplicate-zeros/description/ 题意:对一个数组进行复写,遇到0写两遍,非0写一遍,复写结果不能超过原数组长度,即当复写结果达到数组长度时,后面的结果数组元素直接舍弃. 例子 思路:找到…

Spring Boot单元测试全指南:使用Mockito和AssertJ

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…