机器学习——LightGBM算法

news2024/11/30 15:33:01

机器学习——LightGBM算法

摘要: LightGBM是一种高效的梯度提升框架,它在处理大规模数据时表现出色,并且具有较快的训练速度和较低的内存消耗。本文将介绍LightGBM算法的原理、特点以及与传统GBDT算法的区别,并使用Python对其进行实现和应用。

1. LightGBM简介

LightGBM是一种基于梯度提升框架的机器学习算法,由微软团队开发。相比于传统的梯度提升决策树(GBDT)算法,LightGBM具有更高的训练效率和更低的内存消耗,尤其适用于大规模数据集。

2. LightGBM的特点

2.1 直方图算法

LightGBM采用直方图算法来优化决策树的构建过程。直方图算法将数据按照特征的直方图进行分桶,然后在分桶上进行决策树的构建,减少了对原始数据的扫描次数,从而提高了训练速度。

2.2 互斥特征绑定

LightGBM支持互斥特征绑定,即将一组互斥的特征绑定在一起进行分桶,从而减少了特征的数量,降低了模型的复杂度,提高了泛化能力。

2.3 类别特征处理优化

在处理类别特征时,LightGBM采用了一种更高效的方法,可以直接将类别特征的取值转化为数值特征,而无需进行独热编码等处理,节省了内存空间。

2.4 梯度单边采样策略

LightGBM引入了梯度单边采样策略,即只考虑正向梯度或负向梯度,从而降低了样本采样的复杂度,提高了训练速度。

2.5 Cache命中率优化

LightGBM通过缓存命中率优化,将内存中的数据块分配到不同的线程中,并通过预先加载数据块来提高数据的访问效率,减少了内存访问的开销。

3. LightGBM算法原理

3.1 目标函数定义和求解

LightGBM的目标函数包括损失函数和正则项,通过梯度提升算法来优化目标函数,求得最优的模型参数。具体地,目标函数的定义如下:

Objective ( θ ) = ∑ i = 1 n l ( y i , y ^ i ) + ∑ k = 1 K Ω ( f k ) \text{Objective}(\theta) = \sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k) Objective(θ)=i=1nl(yi,y^i)+k=1KΩ(fk)

其中, l ( y i , y ^ i ) l(y_i, \hat{y}_i) l(yi,y^i)表示损失函数, Ω ( f k ) \Omega(f_k) Ω(fk)表示正则项, f k f_k fk表示第 k k k 棵树的复杂度。

3.2 结点分裂算法

LightGBM采用了基于直方图的结点分裂算法,将数据按特征的直方图进行分桶,然后通过贪心法来选择最优的分裂点,从而构建出更加准确的决策树。

3.3 缺失值处理

对于缺失值,LightGBM将其作为一种特殊的取值,可以直接参与结点分裂过程,并且不需要对缺失值进行特殊处理。

4. Python实现与应用

下面是使用Python对LightGBM算法进行实现和应用的示例代码:

import lightgbm as lgb
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建LightGBM分类器
params = {'objective': 'multiclass', 'num_class': 3, 'random_state': 42}
train_data = lgb.Dataset(X_train, label=y_train)
test_data = lgb.Dataset(X_test, label=y_test, reference=train_data)
clf = lgb.train(params, train_data, num_boost_round=100, valid_sets=[test_data]) #, early_stopping_rounds=10

# 在测试集上进行预测
y_pred = clf.predict(X_test, num_iteration=clf.best_iteration)
y_pred = np.argmax(y_pred, axis=1)

# 计算混淆矩阵
conf_matrix = confusion_matrix(y_test, y_pred)

# 可视化混淆矩阵
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=iris.target_names, yticklabels=iris.target_names)
plt.title('Confusion Matrix')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

在这里插入图片描述
使用confusion_matrix函数计算混淆矩阵,并使用seaborn库中的heatmap函数来绘制混淆矩阵的可视化图形。然后通过plt.show()将图形显示出来。

5. 总结

本文介绍了LightGBM算法的原理、特点和应用,包括直方图算法、互斥特征绑定、类别特征处理优化、梯度单边采样策略、Cache命中率优化等内容。通过Python实现了LightGBM算法,并在鸢尾花数据集上进行了模型训练和评估。LightGBM是一种高效的梯度提升框架,可以有效地处理大规模数据,是机器学习领域中的重要工具之一。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1555756.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java题目9:100匹马驮100担货,大马一匹驮3担,中马一匹驮2担,小马两匹驮1担。计算大中小马的数目(HorsesPackGoods9)

每日小语 正是他的意图损坏了他的悟性。——《充足理由律的四重根》 思考 有点鸡兔同笼的感觉嗷, //100匹马驮100担货,大马一匹驮3担,中马一匹驮2担,小马两匹驮1担。计算大中小马的数目(public class HorsesPackGoo…

C++对C的扩充(三)

5 带缺省参数的函数 一般情况下,实参个数应与形参个数相同。C允许实参个数与形参个数不同。办法是在形参表列中对一个或几个形参指定缺省值(或称默认值)。例如某一函数的首部可用如下形式: void fun(int a, int b,int c100) 在调用此函数时如写成fun(2,4,6),则形参a,b,c的值…

嵌入式下C/C++调用sqlite3简单开发

交叉编译sqlite3请关注我第一篇博文 sqlite3 交叉编译-CSDN博客 sqlite3的命令的简单使用(增删改查,创建/删除表)请关注我的上一篇博文 sqlite3嵌入式使用以及C/C代码开发-CSDN博客 一、新建文件夹 此文件夹用于放置工程,比如…

MySQl on和where条件的区别?

MySQ L on和where条件的区别? on会生成临时表,不满足条件会置空 where 过滤数据,不满足的数据不会显示

推荐算法策略需求-rank model优化

1.pred_oobe (base) [rusxx]$ pwd /home/disk2/data/xx/icode/baidu/oxygen/rus-pipeline/pipeline-migrate/UserBaseActiveStatPipeline/his_session (base) [rusxx]$ sh test.sh 2. user_skill_history_dict_expt2包含userid [workxx]$ vim /home/work/xx/du-rus/du_rus_o…

在Windows上交叉编译STM32(环境搭建)

在Windows上交叉编译STM32 Keil 虽然好用,但是是收费的,不想破解怎么办~ 使用交叉编译工具! 交叉编译工具下载 官方交叉编译工具下载连接 下载解压好后将 bin 目录写入 PATH, 使用命令行检测是否安装成功。 Windows 安装 make …

Docker搭建LNMP环境实战(08):安装php-fpm

1、编写php测试文件 在文件夹&#xff1a;/mnt/hgfs/dockers/test_site/www目录下创建文件&#xff1a;test.php&#xff0c;内容为&#xff1a; <?phpecho "hello world!!!!!! From test.php"; ?>2、编写php-fpm部署配置文件 在文件夹&#xff1a;/mnt/h…

鸿蒙 UIAbility和Compent 生命周期

一、UIAbility的生命周期 在UIAbility的使用过程中&#xff0c;会有多种生命周期状态&#xff0c;掌握UIAbility的生命周期&#xff0c;对于应用的开发非常重要。 1、UIAbility的生命周期 UIAbility的生命周期主要分为以下4个&#xff1a; Create---Foreground---Background---…

linux提权笔记

1 linux提权简介 Linux提权&#xff0c;简单来说&#xff0c;就是用户尝试获取高于其当前权限级别的系统访问权限的过程。在Linux系统中&#xff0c;root用户拥有最高的权限&#xff0c;能够执行任何操作&#xff0c;包括修改系统文件、安装软件、管理用户账户等。而普通用户通…

用html写一个贪吃蛇游戏

<!DOCTYPE html> <html> <head><title>贪吃蛇</title><meta charset"UTF-8"><meta name"keywords" content"贪吃蛇"><meta name"Description" content"这是一个初学者用来学习的小…

智慧公厕厂家如何选择?光明源智能科技打造一流智慧公厕项目

在当今城市化进程中&#xff0c;智慧公厕已经成为提升城市品质、改善市民生活的重要一环。然而&#xff0c;要打造一流的智慧公厕项目&#xff0c;选择合适的厂家显得尤为重要。作为行业领军者&#xff0c;光明源智能科技在智慧公厕领域具有丰富的经验和卓越的技术实力。今天&a…

使用倒模耳机壳UV树脂胶液制作HIFI耳机隔音降噪耳机壳推荐的材料和工艺流程?

对于使用倒模耳机壳UV树脂胶液制作HIFI耳机隔音降噪耳机壳&#xff0c;以下是一些推荐的材料和工艺流程&#xff1a; 材料&#xff1a; UV树脂胶液&#xff1a;选择适合倒模工艺的UV树脂胶液&#xff0c;要求具有高透明度、良好的流动性和固化性能。模具材料&#xff1a;根据…

SpringCloudAlibaba服务消费者调用nacos服务报错:java.net.UnknownHostException: xxx

确保服务情况正常 通过服务名字调用(注意不需要添加端口号) RequestMapping("/add") public String add() {String url "http://stock-nacos/stock/reduce";String result restTemplate.getForObject(url, String.class);System.out.println("下单…

【电子取证篇】哈希校验值的变与不变

【电子取证篇】哈希校验值的变与不变 哈希值&#xff08;散列值&#xff09;是针对电子数据内容来计算的&#xff0c;内容变则哈希变&#xff1b;但计算对象的文件名、文件时间等属性改变不会影响散列值&#xff01;&#xff01;&#xff01;—【蘇小沐】 &#xff08;一&…

软件设计不是CRUD(16):低耦合模块设计理论——行为抽象与设计模式(下)

(接上文《软件设计不是CRUD(15):低耦合模块设计理论——行为抽象与设计模式(中)》) 3.2.4、之前的业务逻辑需要关注后续逻辑的执行成败,并调整自身执行的情况 这个场景在之前场景的基础上增加了新的控制要求,具体来说就是之前已经完成的控制逻辑执行,需要在后续控制…

【讲解下go和java的区别】

&#x1f525;博主&#xff1a;程序员不想YY啊&#x1f525; &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家&#x1f4ab; &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 &#x1f308;希望本文对您有所裨益&#xff0c;如有…

基于java+springboot+vue实现的电商个性化推荐系统(文末源码+Lw+ppt)23-389

摘 要 伴随着我国社会的发展&#xff0c;人民生活质量日益提高。于是对电商个性化推荐进行规范而严格是十分有必要的&#xff0c;所以许许多多的信息管理系统应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套电商个性化推荐系统&#xff0c;帮…

uniapp-打包IOS的APP流程

打包前所需配置 在manifest文件内配置 1. APP图标 2. 启动界面 有三种启动界面配置 第一种是 HBuilderX 官方给的通用启动界面&#xff0c;页面单一&#xff0c;屏幕中间就一个圆框图标 第二种是自定义的启动图&#xff0c;无法通过AppStore的审核 第三种是自定义storyboard启动…

数据结构:单调栈和单调队列

文章目录 一、单调栈1.1、栈的思想1.2、单调栈1.2.1、单调栈的基本应用&#xff1a;找出数组中每个元素右侧第一个更大的元素1.2.2、单调栈的基本应用&#xff1a;找出数组中每个元素左侧第一个更大的元素1.2.3、单调栈拓展1.2.4、单调栈LeetCode题单 二、单调队列2.1、队列的思…

C++项目——集群聊天服务器项目(八)用户登录业务

在第&#xff08;7&#xff09;节中&#xff0c;已经实现用户注册模块&#xff0c;本节来实现用户登录模块 项目流程 1、项目环境搭建 C项目——集群聊天服务器项目(一)项目介绍、环境搭建、Boost库安装、Muduo库安装、Linux与vscode配置_c集群聊天服务器-CSDN博客 2、Jso…