车道线检测_Canny算子边缘检测_1

news2025/2/1 22:39:56

Canny算子边缘检测(原理)

Canny算子边缘检测是一种经典的图像处理算法,由John F. Canny于1986年提出,用于精确、可靠地检测数字图像中的边缘特征。该算法设计时考虑了三个关键目标:低错误率(即尽可能多地检测真实的边缘,同时避免误报)、边缘定位的准确性(确保检测到的边缘位置与实际边缘位置紧密对应)以及边缘的单响应性(确保图像中的每一个边缘只被检测一次,避免重复或断裂)。Canny算子通过以下五个核心步骤实现这些目标:

  1. 图像灰度化

    • 如果输入图像为彩色,首先将其转换为灰度图像,因为Canny算子适用于处理单通道灰度图像。
  2. 高斯滤波(高斯模糊)

    • 应用高斯平滑滤波器对灰度图像进行滤波,以消除图像中的噪声。高斯滤波器通过卷积操作将每个像素值替换为周围像素值的加权平均,其中权重由二维高斯函数确定。这种滤波方式既能有效减弱噪声,又能较好地保留边缘细节,避免过度模糊导致边缘定位模糊。
  3. 计算梯度幅值和方向

    • 对经过高斯滤波的图像计算其梯度。梯度表示图像中像素灰度值的变化率,包含了边缘强度和方向的信息。通常使用一阶偏导数的近似算子(如Sobel算子、Prewitt算子或Roberts算子)来计算水平和垂直方向的梯度分量。然后根据这两个分量计算出梯度幅值(即边缘强度)和梯度方向。梯度方向通常用于后续的非极大值抑制步骤。
  4. 非极大值抑制

    • 该步骤旨在去除非边缘像素的响应,仅保留真正的边缘点。在梯度方向的直线上,检查每个像素的梯度幅值是否为其邻域内(在其梯度方向上)的最大值。如果不是,说明该像素可能不是真正的边缘点,将其梯度幅值置零或降低。这样可以消除边缘检测过程中的许多虚假响应,确保最终得到的边缘轮廓更为精确。
  5. 双阈值检测与边缘连接

    • 设置高低两个阈值,通常选择高阈值来确定强边缘,低阈值用于连接可能断开的弱边缘。具体操作如下:
      • 首先,将梯度幅值大于高阈值的像素标记为边缘像素,形成初步的边缘集。
      • 然后,对于幅值介于高低阈值之间的像素,如果它们与已标记为边缘的像素相邻(即位于已检测边缘的8邻域内),也被认为是边缘像素,以保证边缘的连续性。
      • 最终,只有通过上述条件的像素才被认为是有效的边缘点,其余像素则被舍弃。这种方法有助于减少边缘断裂的同时,抑制噪声引起的伪边缘。

        Canny算子通过一系列精心设计的步骤,实现了对图像边缘的稳健、精确检测,即使在存在噪声干扰的情况下也能保持较高的性能。由于其出色的综合性能,Canny算子在计算机视觉、图像分析、机器视觉等领域中被广泛应用,特别是在需要精确边缘信息的应用场景中,如物体轮廓检测、运动目标跟踪、图像分割等。

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

边缘检测是基于灰度突变来分割图像的常用方法,其实质是提取图像中不连续部分的特征。目前常见边缘检测算子有差分算子、 Roberts 算子、 Sobel 算子、 Prewitt 算子、 Log 算子以及 Canny 算子等。

其中, Canny 算子是由计算机科学家 John F. Canny 于 1986 年提出的一种边缘检测算子,是目前理论上相对最完善的一种边缘检测算法。

Canny 算子在 MATLAB 、 OpenCV 等常用图像处理工具中已有内置的 API。

在 OpenCV 中, Canny 算子使用的函数是 Canny() ,它的原函数如下:

def Canny(image, threshold1, threshold2, edges=None, apertureSize=None, L2gradient=None)

  • image: 表示此操作的源(输入图像)。
  • threshold1: 表示迟滞过程的第一个阈值。
  • threshold2: 表示迟滞过程的第二个阈值。

接下来,接着操作我们之前的马里奥,对马里奥做一次边缘检测看下效果:

import cv2 as cv
from matplotlib import pyplot as plt

# 图像读入
img = cv.imread('maliao.jpg', 0)
edges = cv.Canny(img, 100, 200)

# 显示结果
titles = ['Original Img', 'Edge Img']
images = [img, edges]

# matplotlib 绘图
for i in range(2):
   plt.subplot(1, 2, i+1), plt.imshow(images[i],'gray')
   plt.title(titles[i])
   plt.xticks([]),plt.yticks([])

plt.show()

图像转化(彩->灰)

  图像转化原因:边缘检测最关键的部分是计算梯度,颜色难以提供关键信息,并且颜色本身非常容易受到光照等因素的影响,所以只需要灰度图像中的信息就足够了。并且灰度化后,简化了矩阵,提高了运算速度。

    原理:将彩色图像(Color Image)转换为灰度图(Gray Scale Image),即从三通道RGB图像转为单通道图像。

    实现:我们实现彩图转化为灰度图需要用到opencv库中的cv.cvtColor函数,需要用到两个参数:src——输入图片,code——颜色转换代码,代码如下:

# 灰度图转换
def grayscale(num_img):
    for i in range(num_img):
        filename = 'img' + str(i) + '.jpg'
        img = cv2.imread(filename)
        img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        filename = 'img_gray' + str(i) + '.jpg'
        cv2.imwrite(filename, img_gray)

生成Mask掩膜,提取 ROI

代码如下:

# 生成感兴趣区域即Mask掩模
def region_of_interest(image, vertices):
    mask = np.zeros_like(image)  # 生成图像大小一致的zeros矩
 
    # 填充顶点vertices中间区域
    if len(image.shape) > 2:
        channel_count = image.shape[2]
        ignore_mask_color = (255,) * channel_count
    else:
        ignore_mask_color = 255
 
    # 填充函数
    cv2.fillPoly(mask, vertices, ignore_mask_color)
    masked_image = cv2.bitwise_and(image, mask)
    return masked_image

Hough变换的路沿检测

Hough变换(原理)

        Hough变换是一种使用表决方式的参数估计技术,其原理是利用图像空间和Hough参数空间的线-点对偶性,把图像空间中的检测问题转换到参数空间中进行

基于霍夫变换的直线检测

用到的是Opencv封装好的函数cv.HoughLinesP函数,使用到的参数如下:

image:输入图像,通常为canny边缘检测处理后的图像
rho:线段以像素为单位的距离精度
theta:像素以弧度为单位的角度精度(np.pi/180较为合适)
threshold:霍夫平面累加的阈值
minLineLength:线段最小长度(像素级)
maxLineGap:最大允许断裂长度
具体代码如下:

def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):

    # rho:线段以像素为单位的距离精度
    # theta : 像素以弧度为单位的角度精度(np.pi/180较为合适)
    # threshold : 霍夫平面累加的阈值
    # minLineLength : 线段最小长度(像素级)
    # maxLineGap : 最大允许断裂长度
    lines = cv.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)
    return lines

高斯滤波

高斯滤波算法是一种去除高频噪声的常用方式,通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值都是由其本身和邻域内的其他像素值经过加权平均后得到的。高斯滤波的原理是根据待滤波的像素点及其邻域点的灰度值按照高斯公式生成的参数规则进行加权平均。

我们这一步需要用到opencv库中的cv.GaussianBlur函数,其中使用到的参数为:src——输入图像,kernel_size——高斯核的大小,sigma——高斯标准差(一般默认为0),具体代码如下:

# 高斯滤波
def gaussian_blur(image, kernel_size):
	return cv.GaussianBlur(image, (kernel_size, kernel_size), 0)

绘制高斯滤波后的效果图:

  1. 绘制车道线

图像融合

参考文章:python --opencv图像处理Canny算子边缘检测(Roberts算子、Prewitt算子、Sobel算子、Laplacian算子、Scharr 算子、 LOG 算子)_分别用roberts算子、sobel算子、prewitt算子、拉普拉斯算子、log算子和canny算-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1555445.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《QT实用小工具·三》偏3D风格的异型窗体

1、概述 源码放在文章末尾 可以在窗体中点击鼠标左键进行图片切换,项目提供了一些图片素材,整体风格偏向于3D类型,也可以根据需求自己放置不同的图片。 下面是demo演示: 项目部分代码如下所示: 头文件部分&#xff…

基于微信小程序的日语词汇学习设计与实现(论文+源码)_kaic

日语词汇学习小程序 摘 要 日语词汇学习小程序是高校人才培养计划的重要组成部分,是实现人才培养目标、培养学生科研能力与创新思维、检验学生综合素质与实践能力的重要手段与综合性实践教学环节。本学生所在学院多采用半手工管理日语词汇学习小程序的方式&#x…

【c++】类和对象(五)赋值运算符重载

🔥个人主页:Quitecoder 🔥专栏:c笔记仓 朋友们大家好,本篇文章带大家认识赋值运算符重载,const成员,取地址及const取地址操作符重载等内容 目录 1.赋值运算符重载1.1运算符重载1.1.1特性&#…

鸿蒙OS开发实战:【打造自己的搜索入口】

背景 几乎每家应用中都带有搜索功能,关于这个功能的页面不是特别复杂,但如果要追究其背后的一系列逻辑,可能是整个应用中最复杂的一个功能。今天主要实践目标,会抛开复杂的逻辑,尝试纯粹实现一个“搜索主页”&#xf…

ES学习日记(五)-------插件head安装

接上回,必要的git和node已经装完了,现在开始装head 回到es集群项目里找到plugins(插件文件夹下), 存在安装在plugins启动es报错的情况,报错信息如图一,解决方案就是换个目录,不要放在plugin目录下 git clone https://github.com/mobz/elasticsearch-head.git 打开远程登陆,默…

云原生(七)、Kubernetes初学 + 裸机搭建k8s集群

Kubernetes简介 Kubernetes(通常简称为K8s)是一个开源的容器编排平台,最初由Google设计和开发,现在由Cloud Native Computing Foundation(CNCF)维护。它旨在简化容器化应用程序的部署、扩展和管理。 Kube…

鸿蒙OS开发教学:【编程之重器-装饰器】

HarmonyOS 有19种装饰器 必须【2】 绘制一个页面,这两个肯定会用到 EntryComponent 可选【17】 StatePropLinkObjectLinkWatchStylesStoragePropStorageLinkProvideConsumeObservedBuilderBuilderParamLocalStoragePropLocalStorageLinkExtendConcurrent 如果…

2013年认证杯SPSSPRO杯数学建模B题(第一阶段)流行音乐发展简史全过程文档及程序

2013年认证杯SPSSPRO杯数学建模 B题 流行音乐发展简史 原题再现: 随着互联网的发展,流行音乐的主要传播媒介从传统的电台和唱片逐渐过渡到网络下载和网络电台等。网络电台需要根据收听者的已知喜好,自动推荐并播放其它音乐。由于每个人喜好…

旅游管理系统|基于springBoot旅游管理系统设计与实现(附项目源码+论文)

基于springBoot旅游管理系统设计与实现 一、摘要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本旅游管理系统就是在这样的大环境下诞生,其可以帮助…

考研数学|《1800》+《660》精华搭配混合用(经验分享)

肯定不行,考研数学哪有这么容易的! 先说说这两本习题册,李永乐老师推出的新版660题,相较于18年前的版本,难度略有降低,更加适合初学者。因此,对于处于基础阶段的学习者来说,新版660…

【C语言】linux内核pci_register_driver

一、注释 以下是对源代码中英文注释的中文翻译,可能会略去一些编程上的专有词汇(例如函数名、类型名等),以使翻译更易理解。 // drivers\pci\pci-driver.c /*** __pci_register_driver - 注册一个新的PCI驱动* drv: 需要注册的驱…

消息队列RocketMQ环境搭建

消息队列RocketMQ环境搭建 1.下载:配置环境变量启动NameServer启动Broker发送和接收消息测试模拟发送消息模拟接收消息 控制台安装与启动 软硬件需求: 系统要求是 64 位的,JDK要求是1.8及其以上版本的 1.下载: https://rocketmq.apache.org/download/ 2.解压到指…

网站维护页404源码

网站维护页404源码,布局简洁,上传即可使用。 网站维护页404源码

三步提升IEDA下载速度——修改IDEA中镜像地址

找到IDEA的本地安装地址 D:\tool\IntelliJ IDEA 2022.2.4\plugins\maven\lib\maven3\conf 搜索阿里云maven仓库 复制https://developer.aliyun.com/mvn/guide中红框部分代码 这里也是一样的&#xff1a; <mirror><id>aliyunmaven</id><mirrorOf>*&…

2024年MathorCup数学建模思路A题B题C题D题思路分享

文章目录 1 赛题思路2 比赛日期和时间3 组织机构4 建模常见问题类型4.1 分类问题4.2 优化问题4.3 预测问题4.4 评价问题 5 建模资料 1 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 2 比赛日期和时间 报名截止时间&#xff1a;2024…

SpringBoot实现RabbitMQ延迟队列

RabbitMQ实现延迟队列的两种方式 利用RabbitMQ插件方式实现延迟队列利用RabbitMQ死信队列实现延迟队列 插件方式实现延迟队列 下载插件&#xff1a;Community Plugins | RabbitMQ 按照官网步骤安装插件 installing Additional Plugins | RabbitMQ 插件方式实现延迟队列&a…

BOM系统:贯穿制造全程的管理利器

在制造行业中&#xff0c;BOM系统的应用已经成为提高生产效率、降低成本和确保产品质量的关键因素。BOM系统作为产品结构和物料清单的管理工具&#xff0c;为制造企业提供了全面的控制和协同能力。 1.产品设计与开发&#xff1a;在产品设计阶段&#xff0c;BOM系统为工程师提供…

【C语言】InfiniBand内核驱动_mlx4_ib_post_send

一、注释 以下是_mlx4_ib_post_send函数的注释&#xff0c;该函数用于处理InfiniBand工作请求&#xff08;WRs&#xff09;的发送过程&#xff1a; static int _mlx4_ib_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,const struct ib_send_wr **bad_wr, bool …

再见 mysql_upgrade

在数据库管理的世界里&#xff0c;随着技术的不断进步和业务的不断发展&#xff0c;数据库的版本升级成为了一个不可避免的过程。 MySQL 作为业界领先的开源关系型数据库管理系统&#xff0c;其版本迭代与功能优化同样不容忽视。 而在这个过程中&#xff0c;升级工具就显得尤为…