文章目录
- 1. 源算子 Source
- 1. 从集合读
- 2. 从文件读取
- 3. 从 socket 读取
- 4. 从 kafka 读取
- 5. 从数据生成器读取数据
- 2. 转换算子
- 基本转换算子(map/ filter/ flatMap)
1. 源算子 Source
Flink可以从各种来源获取数据,然后构建DataStream进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。
在Flink1.12以前,旧的添加source的方式,是调用执行环境的addSource()方法:
DataStream stream = env.addSource(…);
方法传入的参数是一个“源函数”(source function),需要实现SourceFunction接口。
从Flink1.12开始,主要使用流批统一的新Source架构:
DataStreamSource stream = env.fromSource(…)
Flink直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的Source,通常情况下足以应对我们的实际需求。
1. 从集合读
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 1. 从集合读
// DataStreamSource<Integer> source = env.fromCollection(Arrays.asList(1, 2, 3));
// 2. 直接填元素
DataStreamSource<Integer> source = env.fromElements(1, 2, 3, 4);
source.print();
env.execute();
}
2. 从文件读取
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-files</artifactId>
<version>${flink.version}</version>
</dependency>
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
FileSource<String> source = FileSource.forRecordStreamFormat(
new TextLineInputFormat(),
new Path("input/world.txt"))
.build();
env
.fromSource(source, WatermarkStrategy.noWatermarks(), "fileSource")
.print();
env.execute();
}
3. 从 socket 读取
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> source = env.socketTextStream("localhost", 7777);
source.print();
env.execute();
}
可以使用
nc -l 7777
创建一个监听链接的 tcp
4. 从 kafka 读取
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka</artifactId>
<version>${flink.version}</version>
</dependency>
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
.setBootstrapServers("hadoop102:9092")
.setTopics("topic_1")
.setGroupId("atguigu")
.setStartingOffsets(OffsetsInitializer.latest())
.setValueOnlyDeserializer(new SimpleStringSchema())
.build();
DataStreamSource<String> stream = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "kafka-source");
stream.print("Kafka");
env.execute();
}
5. 从数据生成器读取数据
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-datagen</artifactId>
<version>${flink.version}</version>
</dependency>
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataGeneratorSource<String> dataGeneratorSource = new DataGeneratorSource<>(new GeneratorFunction<Long, String>() {
@Override
public String map(Long value) throws Exception {
return "Number:" + value;
}
}, 10, // 自动生成的数字序列
RateLimiterStrategy.perSecond(10), // 限速策略,每秒生成10条
Types.STRING // 返回类型
);
env.fromSource(dataGeneratorSource, WatermarkStrategy.noWatermarks(), "datagenerator").print();
env.execute();
}
2. 转换算子
数据源读入数据之后,我们就可以使用各种转换算子,将一个或多个DataStream转换为新的DataStream。
基本转换算子(map/ filter/ flatMap)
map是大家非常熟悉的大数据操作算子,主要用于将数据流中的数据进行转换,形成新的数据流。简单来说,就是一个“一一映射”,消费一个元素就产出一个元素。
filter转换操作,顾名思义是对数据流执行一个过滤,通过一个布尔条件表达式设置过滤条件,对于每一个流内元素进行判断,若为true则元素正常输出,若为false则元素被过滤掉。
flatMap操作又称为扁平映射,主要是将数据流中的整体(一般是集合类型)拆分成一个一个的个体使用。
:::info
消费一个元素,可以产生0到多个元素。
:::
flatMap可以认为是“扁平化”(flatten)和“映射”(map)两步操作的结合,也就是先按照某种规则对数据进行打散拆分,再对拆分后的元素做转换处理。