Python+Django+Yolov5路面墙体桥梁裂缝特征检测识别html网页前后端

news2024/11/14 16:24:56

程序示例精选
Python+Django+Yolov5路面墙体桥梁裂缝特征检测识别html网页前后端
如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!

前言

这篇博客针对《Python+Django+Yolov5路面墙体桥梁裂缝特征检测识别html网页前后端》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


运行结果


文章目录

一、所需工具软件
二、使用步骤
       1. 主要代码
       2. 运行结果
三、在线协助

一、所需工具软件

       1. Python
       2. Django, Yolov5, Pycharm

二、使用步骤

代码如下(示例):

def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://'))
 
    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
 
    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA
 
    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16
 
    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
 
    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)
 
    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
 
    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
 
        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]
 
        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_synchronized()
 
        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)
 
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
 
            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
 
 
                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')
 
                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
 
            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')
 
 
            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
 
                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                    vid_writer.write(im0)
 
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
 
    print(f'Done. ({time.time() - t0:.3f}s)')
    
    print(opt)
    check_requirements()
 
    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)
            for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                detect()
                strip_optimizer(opt.weights)
        else:
            detect()

运行结果

三、在线协助:

如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助!

1)远程安装运行环境,代码调试
2)Visual Studio, Qt, C++, Python编程语言入门指导
3)界面美化
4)软件制作
5)云服务器申请
6)网站制作

当前文章连接:https://blog.csdn.net/alicema1111/article/details/132666851
个人博客主页:https://blog.csdn.net/alicema1111?type=blog
博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog

博主推荐:
Python人脸识别考勤打卡系统:
https://blog.csdn.net/alicema1111/article/details/133434445
Python果树水果识别:https://blog.csdn.net/alicema1111/article/details/130862842
Python+Yolov8+Deepsort入口人流量统计:https://blog.csdn.net/alicema1111/article/details/130454430
Python+Qt人脸识别门禁管理系统:https://blog.csdn.net/alicema1111/article/details/130353433
Python+Qt指纹录入识别考勤系统:https://blog.csdn.net/alicema1111/article/details/129338432
Python Yolov5火焰烟雾识别源码分享:https://blog.csdn.net/alicema1111/article/details/128420453
Python+Yolov8路面桥梁墙体裂缝识别:https://blog.csdn.net/alicema1111/article/details/133434445

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1552905.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法---动态规划练习-7(按摩师)【类似打家劫舍】

按摩师 1. 题目解析2. 讲解算法原理3. 编写代码 1. 题目解析 题目地址:点这里 2. 讲解算法原理 首先,给定一个整数数组 nums,其中 nums[i] 表示第 i 天的预约时间长度。 定义两个辅助数组 f 和 g,长度都为 n(n 是数组…

RabbitMQ 实验消费原始队列消息, 拒绝(reject)投递死信交换机过程

如果你想通过 RabbitMQ 的死信队列功能实现消费者拒绝消息投递到死信交换机的行为,你可以按照以下步骤操作: 创建原始队列,并将其绑定到一个交换机上: export RABBITMQ_SERVER127.0.0.1 export RABBITMQ_PORT5672 export RAB…

【VMware Workstation】公司所有主机和虚拟机ip互通,以及虚拟机目录迁移

文章目录 1、场景2、环境3、实战3.1、所有主机和虚拟机ip互通Stage 1 : 【虚拟机】设置为桥接模式Stage 2 : 【虚拟机】设置ipStage 3 : 【路由器】ARP 静态绑定MACStage 3-1 ping 路由器 ipStage 3-2 【静态绑定】虚拟机查看mac地址Stage 3-3 【静态绑定】路由器ARP 静态绑定 …

基于js css的瀑布流demo

要实现照片按照瀑布流展示&#xff0c;写个小demo&#xff0c;记录下。 瀑布流实现思路如下&#xff1a; CSS 弹性布局对 3 列按横向排列&#xff0c;对每一列内部按纵向排列 html代码&#xff1a; <div class"content"></div> css代码&#xff1a; …

【 MyBatis 】| 关于多表联查返回 List 集合只查到一条的 BUG

目录 一. &#x1f981; 写在前面二. &#x1f981; 探索过程2.1 开端 —— 开始写 bug2.2 发展 —— bug 完成2.3 高潮 —— bug探究2.4 结局 —— 效果展示 三. &#x1f981; 写在最后 一. &#x1f981; 写在前面 今天又是 BUG 气满满的一天&#xff0c;一个 xxxMapper.xm…

新手体验OceanBase社区版V4.2:离线部署单节点集群

本文源自OceanBase用户的分享 先简单总结如下&#xff1a; 1.本文适合初学者体验OceanBase社区版 v4.2.2 2.仅需准备一台配置为2C/8G的Linux虚拟机 3.通过离线方式安装&#xff0c;以便更直观地了解安装过程 一、Linux系统准备 在宿主机(即你的windows PC电脑)上安装vbox软…

Mac添加和关闭开机应用

文章目录 mac添加和关闭开机应用添加开机应用删除/查看 mac添加和关闭开机应用 添加开机应用 删除/查看 打开&#xff1a;系统设置–》通用–》登录项–》查看登录时打开列表 选中打开项目&#xff0c;点击“-”符号

大模型时代下的“金融业生物识别安全挑战”机遇

作者&#xff1a;中关村科金AI安全攻防实验室 冯月 金融行业正在面临着前所未有的安全挑战&#xff0c;人脸安全事件频发&#xff0c;国家高度重视并提出警告&#xff0c;全行业每年黑产欺诈涉及资金额超过1100亿元。冰山上是安全事件&#xff0c;冰山下隐藏的是“裸奔”的技术…

npm救赎之道:探索--save与--save--dev的神秘力量!

目录 1. --save和--save-dev是什么&#xff1f;2. 区别与应用场景--save--save-dev 3. 生产环境与开发环境4. 实际应用示例--save--save-dev 5. 总结 在现代软件开发中&#xff0c;npm&#xff08;Node Package Manager&#xff09;扮演着不可或缺的角色&#xff0c;为开发者提…

python基础 | 核心库:PIL

1、读取图像信息 查看图像信息 读取同一文件夹下的文件 可加 ./可不加 rom PIL import Image img Image.open(image.jpg) # 打开图像文件(注意:是去掉文件头的纯数据) print(img.format) # 图像格式(如BMP PNG JPEG 等) print(img.size) # 图像大小(…

第二十一章 Jquery ajax

文章目录 1. jquery下载2. jquery的使用3. jquery页面加载完毕执行4. jquery属性控制6. 遍历器 2. ajax1. 准备后台服务器2. ajax发送get请求3. ajax发送post请求 1. jquery下载 点击下载 稳定版本1.9 2. jquery的使用 存放到html文件的同级目录 3. jquery页面加载完毕执行…

Unity照片墙简易圆形交互效果总结

还要很多可以优化的点地方&#xff0c;有兴趣的可以做 比如对象的销毁和生成可以做成对象池&#xff0c;走到最左边后再移动到最右边循环利用 分析过程文件&#xff0c;采用Blender&#xff0c;资源已上传&#xff0c;可以播放动画看效果&#xff0c;下面截个图&#xff1a; …

OpenPLC_Editor 在Ubuntu 虚拟机安装记录

1. OpenPLC_Editor在虚拟机上费劲的装了一遍&#xff0c;有些东西已经忘了&#xff0c;主要还是python3 的缺失库版本对应问题&#xff0c;OpenPLC_Editor使用python3编译的&#xff0c;虚拟机的Ubuntu 18.4 有2.7和3.6两个版本&#xff0c;所以需要注意。 2. OpenPLC_Editor …

专题:一个自制代码生成器(嵌入式脚本语言)之应用实例

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github&#xff1a;codetoys&#xff0c;所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的&#xff0c;可以在任何平台上使用。 专题&#xff1a;一个自制代码…

【嵌入式机器学习开发实战】(十二)—— 政安晨:通过ARM-Linux掌握基本技能【C语言程序的安装运行】

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 嵌入式机器学习开发实战 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 在ARM-Linux系统中&#xff0c;C语言程序的安装和运行可…

局域网找不到共享电脑怎么办?

局域网找不到共享电脑是一种常见的问题&#xff0c;给我们的共享与合作带来一定的困扰。天联组网技术可以解决这个问题。本文将介绍天联组网的原理和优势&#xff0c;并探讨其在解决局域网找不到共享电脑问题中的应用。 天联组网的原理和优势 天联组网是一种基于加速服务器的远…

Linux 系统 CentOS7 上搭建 Hadoop HDFS集群详细步骤

集群搭建 整体思路:先在一个节点上安装、配置,然后再克隆出多个节点,修改 IP ,免密,主机名等 提前规划: 需要三个节点,主机名分别命名:node1、node2、node3 在下面对 node1 配置时,先假设 node2 和 node3 是存在的 **注意:**整个搭建过程,除了1和2 步,其他操作都使…

浅谈C语言编译与链接

个人主页&#xff08;找往期文章包括但不限于本期文章中不懂的知识点&#xff09;&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 翻译环境和运行环境 在ANSI C&#xff08;标准 C&#xff09;的任何一种实现中&#xff0c;存在两个不同的环境。 第1种是翻译环境&#xff0c;在这个…

XUbuntu22.04之激活Linux最新Typora版本(二百二十五)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

109、Recent Advances in 3D Gaussian Splatting

简介 论文 对3D Gaussian Splatting的综述 质量提升 Mip-Splatting观察到&#xff0c;改变采样率&#xff0c;例如焦距&#xff0c;可以通过引入高频高斯类形伪影或强膨胀效应&#xff0c;极大地影响渲染图像的质量&#xff0c;因此Mip-Splatting将3D表示的频率限制在训练图…