from: https://zhuanlan.zhihu.com/p/368196647 多分类 from sklearn.metrics import classification_report y_true = [0, 1, 2, 2, 2] y_pred = [0, 0, 2, 2, 1] target_names = ['class 0', 'class 1', 'class 2'] # print(classification_report(y_true, y_pred, target_names=target_names)) print(classification_report(y_true, y_pred)) 多标签分类 import numpy as np from sklearn.metrics import classification_report y_true = np.array([ [1, 0, 1, 0, 0], [0, 1, 0, 1, 1], [1, 1, 1, 0, 1]]) y_pred = np.array([[1, 0, 0, 0, 1], [0, 1, 1, 1, 0], [1, 1, 1, 0, 0]]) print(classification_report(y_true, y_pred, digits=3)) # digits=3, 3位小数 理解多标签分类中 micro avg, precision表示所有预测1中,对的个数,所以是/8;recall表示所有样本1中,对的个数,所以是/9