基于Transformer的医学图像分类研究

news2024/11/16 19:49:41

医学图像分类目前面临的挑战

  1. 医学图像分类需要研究人员同时具备医学图像分析和数字图像的知识背景。
  2. 由于图像尺度、数据格式和数据类别分布的影响,现有的模型方法,如传统的机器学习的识别方法和基于深度卷积神经网络的方法,取得的识别准确度和泛化性是有限的。
  3. 实际场景中,由于医学图像数据的标记成本问题和病例医学图像采集问题,能够获得的有标签医学图像数据是有限的。

现有的医学图像分类方法

  1. 基于统计的分类。分为有监督和无监督两种方式。有监督的统计分类方式通常会将数据划分成训练集和测试集,然后来预测数据的类别标签。常见的概率算法(有监督):最近邻算法、贝叶斯算法;无监督则通过特征分布来区分数据的类别:K均值聚类和模糊聚类算法。
  2. 基于规则的分类。根据设定的一系列规则对特征向量进行分析,后续的过程根据任务的属性设置相应的决策。
  3. 支持向量机。核心思想是寻找给定两个类别之间的最优分离边界。SVM不仅可以用于线性分类场景,还可以在核函数的基础上进行非线性的分类

基于神经网络的分类模式是目前主流的医学图像分类方式,它也可以分为有监督和无监督两种方式。
  1. 有监督的情况下,训练神经网络使得它为每个输入数据分配一个类别标签,然后通过神经网络的预测输出和实际标签之间的误差(即损失函数)来调整神经网络的参数。
  2. 在无监督的情况下,训练样本并不需要有明确的标签信息,神经网络主要探究数据的底层结构和类别实例之间的关联性,根据样本的相似度或不相似度将其划分为一个个簇。

卷积神经网络在医学成像分类过程中的使用方式:

  1. 直接进行训练;
  2. 迁移学习或者微调;
  3. 特征提取器(深度卷积神经网络会移除分类层,将卷积层的输出作为输入图像的特征表示)

卷积神经网络结构

残差网络

模型网络的层数过少会导致训练误差变大,然而不断增加网络层数在可能会带来模型效果的提升的同时也会导致在训练过程过程中网络梯度消失或爆炸的问题。这是因为当网络过深时,由于反向传播过程中导数不断连乘,网络参数的梯度在这过程中会逐渐趋于零或者无穷大,导致网络参数无法进行有效更新。

64通道卷积神经网络

64通道卷积神经网络由四个卷积模块组成,每个卷积模块都包含了一个卷积层、一个批归一化层和一个激活层。此外,对于前两个卷积模块,它们还包含一个额外的2*2最大池化层。卷积层对应的卷积核大小为3*3,通道数为64,卷积核在特征图上的滑动步长为1.

批归一化层在这里的目的是为了对每一批处理的数据进行约束,在一定程度上减少了模型在训练过程中发生过拟合的风险,增强模型的泛化能力。

激活层则是为模型引入非线性元素,同时对于模型参数反向传播时出现梯度消失和爆炸现象起着一定的缓解作用。前两个卷积模块包含的最大池化层主要的作用是对特征图进行下采样。

Transformer

整体结构

编码器由N个相同的编码层组成,每个编码层包含两个子层,分别是多头自注意力层和一个简单全连接前馈网络。同时两个子层之间采用了跳跃连接的方式,并在每个子层之后采用归一化层

每个层对应的输出为:LayerNorm(x+SubLayer(x)),其中SubLayer(x)表示子层。

对于解码器,由N个相同解码层组成。解码层由三个子层组成,解码层比编码层多一个多头自注意力子层。增加的多头自注意力层主要用来执行输出的注意力捕获,这三个子层也采用了跳跃连接的方式进行组织。

多头自注意力模块

多头注意力模块包含多个自注意力模块,它们在通道维度进行拼接,以建模输入序列中不同元素之间的关系

自注意力模块的softmax对应的计算复杂度是关于输入序列长度的平方,因此在输入序列长度过大时会消耗较大的计算资源。

位置编码

由于 Transformer 结构中不包含卷积和递归结构,所以为了使得模型能够利用输入序列的顺序信息,需要引入位置编码来表示元素在序列中的相对位置。位置编码的维度和输入以及输出的嵌入向量一致,所以可以直接相加作为编码器和解码器的输入。

视觉Transformer

ViT首先将输入图像进行转变成一组切片序列,然后将其输入到标准的Transformer的编码器中进行处理,以实现不同的下游任务。

自动化机器学习

自动化机器学习任务的组成包括机器学习算法的选取、结合、以及参数化处理过程。
自动化机器学习方法主要由两个部分组成:一个是搜索空间模型,另一个是遍历搜索空间的优化器

自动化机器学习的目标是在学习工具上构建一个高级别的控制器,用来找到合适的特征、模型以及算法的参数配置。

自动化特征工程的目标是构建一个提升后续模块表现的特征集。

特征金字塔Transformer模型

为了便于理解医学图像分类任务的主要目标,首先建立一个医学图像分类任务的定义。对于给定大小 H × W 且通道数为 C 的输入图像 x R H × W × C ,在MedMNIST 中 H = W = 28 并且 C = 1 3 ,医学图像分类的目标是准确识别图像在对应数据集中的种类 y。
\hat{y}=G(x)
其中, \hat{y}指的是类别预测输出。

模型组件

深度残差网络和Vision Transformer,两个组件分别对应了特征提取和特征建模能力。

Res-Net-18主要由八个基本块组成,每两个基本块组成一个基本层(basic layer)。一般来说,浅层网络主要提取比较泛化的特征信息,而深层网络则可以提取到输入图像更具有特征的特征信息。

Vision Transformer组件则是将一张图像处理成相同尺寸的多个切片,然后被输入到Transformer中。给定一张图像x\in R^{H\times W\times C},它经过变换后成为一系列展平的切片x_{p} \in R^{N\times(P^{2}C)},其中,(P,P)表示每个切片的大小。

一张图像通常首先会被输入到一个卷积神经网络中提取特征,然后模型根据输出的特征图进行分类。神经网络的不同层具备不同的特征信息,但是目前大多数模型都是基于深层特征进行预测。

 整体模型

模型将ResNet-18中的基本层作为特征提取器,将获取的CNN特征图展平为一个线性序列。

模型可以充分使用深度神经网络中低层、中层以及高层的特征输出来进行预测。使用基本层作为特征提取器能够取得比直接使用Vision Transformer更好的效果。

对于ResNet的四个基本层,可以使用符号 B1, B2, B3, B4 来进行表示,同时每个基本层都被看作一个特征提取器

B_{i}=g(B_{i-1})+f(g(B_{i-1})),i=2,3,4

x为输入特征,f表示基本块的一系列运算操作,g表示残差连接,并且g(.)=.+f(.)。各层的输出可以被建模为通过不同尺度来观察输入图像。

多尺度融合决策

对于四个不同层的输出,选取前三个尺度的特征图(B1,B2,B3)并将其输入到三个浅层的ViT中。对于最后一个尺度的特征图输出(B4),它被保留在ResNet-18的原始路径中。

对于Transformer路径部分,首先将输入{b_{i}\in B_{i}\mid i=1,2,3}变换成一系列展平的2D切片,每块切片的大小都为1*1,之后利用可训练的线性投影将矢量化切片映射到一个D维的嵌入空间中。同时,为每个切片添加位置嵌入来保持切片在原图中的位置信息。

Transformer的编码器主要包含两个组件:多头自注意力结构和多层感知机(MLP)模块。通过编码器的处理后,可以获取激活函数a,其处理过程

 对于ResNet原路径部分,最后一层的特征图被输入进一个池化层和一个线性层。最后一层对应的激活向量a_{4}=F_{linear}(F_{pool}b4),b_{4}\in B_{4},接着将四个激活向量进行拼接,并且将最终的预测通过一个softmax或sigmoid函数进行处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1552118.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

linux 环境安装配置

安装java17 1.下载安装包 wget https://download.oracle.com/java/17/latest/jdk-17_linux-x64_bin.tar.gz 2.解压到自定义目录/usr/local/java mkdir /usr/local/java tar zxvf jdk-17_linux-x64_bin.tar.gz -C /usr/local/java 3.配置环境变量 echo export PATH$PATH:/…

Ansible-1

Ansible是一款自动化运维、批量管理服务器的工具,批量系统配置、程序部署、运行命令等功能。基于Python开发,基于ssh进行管理,不需要在被管理端安装任何软件。Ansible在管理远程主机的时候,只有是通过各种模块进行操作的。 需要关…

指针数组的有趣程序【C语言】

文章目录 指针数组的有趣程序指针数组是什么?指针数组的魅力指针数组的应用示例:命令行计算器有趣的颜色打印 结语 指针数组的有趣程序 在C语言的世界里,指针是一种强大的工具,它不仅能够指向变量,还能指向数组&#…

OpenHarmony实战开发-List组件的使用之设置项

介绍 在本篇CodeLab中,我们将使用List组件、Toggle组件以及Router接口,实现一个简单的设置页,点击将跳转到对应的详细设置页面。效果图如下: 相关概念 CustomDialog:CustomDialog装饰器用于装饰自定义弹窗。List&…

支付系统就该这么设计,稳的一批!!

Part one 支付系统总览 核心系统交互 业务图谱 Part two 核心系统解析 交易核心 支付核心 渠道网关 资金核算 Part three 服务治理 平台统一上下文 数据一致性治理 DB拆分 异步化 Part four 生产实践 性能压测 稳定性治理 核心链路分离 服务依赖降级 前言 支付永…

2024.3.21|华北水利水电大学江淮校区ACM社团训练赛

2024.3.21|华北水利水电大学江淮校区ACM社团训练赛 1.数字拆解 2.矩阵修改 3.因子数 4.回文数 5.中位数 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴…

敏捷BI看永洪科技,连续六届BI商业智能第一名

敏捷性对BI商业智能的重要性不言而喻。在一个快速变化的商业环境中,企业需要敏锐的洞察力和及时的反应能力来应对不断涌现的挑战和机遇。敏捷BI的核心理念是在保持质量的前提下,以快速、灵活、创新的方式获取、分析和利用数据,为企业决策提供…

并发编程之Callable方法的详细解析(带小案例)

Callable &#xff08;第三种线程实现方式&#xff09; Callable与Runnable的区别 Callable与Runnable的区别 实现方法名称不一样 有返回值 抛出了异常 ​class Thread1 implements Runnable{Overridepublic void run() { ​} } ​ class Thread2 implements Callable<…

【数学符合】

数学符合 ■ ∑ ■ ∑

中国国际通信大会2024|中国通信展览会|通信展览会

中国国际通信大会2024|中国通信展览会|通信展览会 中国国际信息通信展览会&#xff08;ICT展&#xff09;是亚太地区最具影响力的信息通信技术盛会之一。每年一度的ICT展汇聚了来自全球各行各业的专业人士&#xff0c;为各领域的科技公司、创新企业以及技术爱好者们提供一个难得…

Aurora插件安装

介绍 Latext是一种基于TEX的排版系统。 CTeX中文套装是基于Windows下的MiKTeX系统&#xff0c;集成了编辑器WinEdt和PostScrip处理软件Ghostscript和GSview等主要工具。CTeX中文套装在MikTeX的基础上增加了对中文的完整支持。 CTeX&#xff1a; CTeX套装 - CTEX 下载安装 然后…

libVLC 捕获鼠标、键盘事件

在实现播放器的时候&#xff0c;我们需要捕获键盘、鼠标事件进行视频快进、快退&#xff0c;或者双击全屏/退出全屏窗口、鼠标右键弹出菜单栏。默认情况下&#xff0c;在使用libVLC库的时候&#xff0c;我们无法捕获这些事件&#xff0c;因为我们将Qt的视频窗口传递给了libVLC。…

游泳防水耳机什么牌子好?内行人精选4个精品,不入后悔!

游泳是我们生活中一项非常重要的运动&#xff0c;它不仅可以锻炼我们的身体&#xff0c;还可以让我们放松心情。然而&#xff0c;在水下听音乐或接受指导&#xff0c;常常因为防水问题而变得困难重重。为了让大家在游泳时也能享受到美妙的音乐或者清晰的语音指导&#xff0c;我…

16.JRE和JDK

程序员在编写代码的时候其实是需要一些环境&#xff0c;例如我们之前写的HelloWorld。我们需要的东西有JVM、核心类库、开发工具。 1、JVM&#xff08;Java Virtual Machine&#xff09;&#xff1a;Java虚拟机&#xff0c;真正运行Java程序的地方。没有虚拟机&#xff0c;代码…

Spark-Scala语言实战(6)

在之前的文章中&#xff0c;我们学习了如何在scala中定义与使用类和对象&#xff0c;并做了几道例题。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 Spark-S…

springboot+mybatis快速搭建入门项目

简介 本文介绍了如何使用idea搭建一个简易springboot后端项目&#xff0c;该项目可以接受前端http请求&#xff0c;经由服务端并访问数据库&#xff0c;最后返回查询结果。该简易项目从零开始搭建&#xff0c;涵盖controller/service/dao层&#xff0c;简单易懂易上手&#xf…

离心式风机运行效率测算

1.总压静压动压&#xff1b; 2.动压0.5空气体密度风速2&#xff1b; 风机所需功率P&#xff08;KW&#xff09;&#xff1a;PQp/&#xff08;36001000η0η1&#xff09; Q—风量&#xff0c;m3/h&#xff1b; p—风机的全风压&#xff0c;Pa&#xff1b; η0—风机的内效率&a…

C++ 控制语句(二)

一 break continue和goto语句 1 break语句 在switch语句中&#xff0c;分隔case子句&#xff0c;跳出switch语句。 在循环语句中可以立即终止循环语句的执行。 2 continue语句 功能:在一次循环过程中,跳过continue语句以下的语句,直 接进入下一次循环操作。 3 goto语句 …

Java学习之方法

目录 方法 方法声明格式&#xff1a; 调用方式&#xff1a; 详细说明 示例 --方法的声明及调用 语句块 练习 方法的重载(overload) 构成条件 示例 --方法重载 递归结构 缺陷 方法 方法(method)&#xff1a;一段用于完成特定功能的代码片段&#xff0c;类似于其他语…

【2024年软考】老伙计的软考之路(1)软考报名

一、2024软考改革 仔细看工信部发的软考通知附件&#xff0c;对比上半年和下半年的考试科目变化。 比如高级&#xff1a; 1、信息系统项目管理师从之前的一年考两次变成了今年上半年只考一次。 2、网络规划设计师、系统规划与管理师变成下半年只考一次。 剩下的自己对比着…