全面解读MinION纳米孔测序技术及应用

news2025/1/20 10:51:34

全面解读MinION纳米孔测序技术及应用
link:https://www.seqchina.cn/467.html 【测序中国】
paper:The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community
https://pubmed.ncbi.nlm.nih.gov/27887629/

纳米孔测序技术是近几年兴起的新一代测序技术。目前测序长度可达150kb。这项技术始于90年代,经历三个主要技术革新:一、单分子DNA从纳米孔通过;二、纳米孔上的酶对测序分子在单核苷酸精度的控制;三、单核苷酸的测序精度控制。目前市场广泛接受的纳米孔测序平台是Oxford Nanopore Technologies(ONT)公司的MinION纳米孔测序仪。它的特点是单分子测序,测序读长(超过150kb),测序速度,测序数据实时监控,机器方便携带等。本综述重点总结MinION测序仪的技术特点和应用领域。

一、 MinION测序技术简介

MinION纳米孔测序仪的核心是一个有2048个纳米孔,分成512组,由专用集成电路控制的flow cell。测序原理见图1a所示:首先,将双分子DNA连接lead adaptor(蓝色)hairpin adaptor(红色)trailing adaptor(棕色);当测序开始,lead adaptor带领测序分子进入由酶控制的纳米孔,lead adaptor后是template read(即待测序的DNA分子)通过纳米孔,hairpin adaptor的作用是DNA 双链测序的保证,然后complement read(待测序分子的互补链)通过纳米孔,最后trailing adaptor通过。在上述测序方法中,template read和complement read依次通过纳米孔,利用pairwise alignment,它们组合成2D read;而在另一种测序方法中,不使用hairpin adaptor,只测template read,最终形成1D read。后一种通量更高,但测序准确性低于2D read。每个接头序列(adaptor)通过纳米孔引起的电流变化不同(图1c),这种差别可以用来做碱基识别。

在这里插入图片描述

二、 MinION相对于其他NGS测序平台的优势

1. 碱基修饰检测

纳米孔测序技术检测四种胞嘧啶(cytosine)碱基修饰,分别为5-methycytosine,5-hydroxymethycytosine,5-formylcytosine和5-carboxylcytosine。检测准确率为92%-98%

2. 实时测序监控

对于临床实践,实时获取和分析DNA/RNA序列是一件很重要的事情。对于传统的NGS测序,做到这一点非常不易。但对于MinION,实现起来相对容易。这不仅是因为MinION体积小,易操作等,更是因为在测序过程中单分子穿过纳米孔,其电流变化可以检测并识别,这种设计允许用户在测序过程中根据实时结果做出一些判断。实时测序监控对于MinION针对特定目标序列测序有重要的应用(图2):当DNA片段通过纳米孔时,如果电流变化呈现与目标序列一样的趋势,则通过纳米孔。如果DNA片段与目标序列呈现不同的电流变化趋势,则不能通过纳米孔。通过这样的方式,实现目标序列的富集,从而显著减少测序时间,对于在野外和即时诊疗有重要意义。

在这里插入图片描述

3. 测得更长read

MinION测序仪,1D read可获得300kb长read;2D read可获得60kb的read。利用MinION测序仪产生的长read,研究人员设法填充人参考基因组Xq24号染色体一个长50kb的gap。该区域存在多个CT47基因串联拷贝,研究人员利用MinION的长read判断该区域极有可能存在8个CT47基因拷贝(图3)。

在这里插入图片描述

4. 结构变异检测

NGS短序列的特征使结构变异的检测往往不准确。这个问题在癌症的检测中尤其严重,这是因为癌症组织中充斥各种结构变异。研究人员发现利用MinION测得的几百个拷贝的长read得到的结构变异结果比NGS平台测得的上百万read得到的结果更可靠。

5. RNA表达分析

对于RNA表达分析,NGS 短序列 需要拼接,才能得到转录本。这给可变剪切研究带来困扰。因为 NGS测序不能产生足够的信息将不同形式的可变剪切区分开。而利用MinION测序仪产生的长read,可以更好地解决这个问题。研究人员利用果蝇的Dscam1基因为例,其存在18612种可变剪切,利用MinION测序仪可以检测到超过7000种可变剪切形式,而这样的结果利用NGS的短序列测序是不能够获得的。

6. 生物信息学配套软件的发展

近些年来,随着生物信息分析方法的发展,MinION测序reads成功比对参考基因组的比例已经从66%提升至92%。文章下面对各种工具的适用场景进行了分别介绍。工具概述见表1。

在这里插入图片描述

(1)碱基识别工具

Metrichor是ONT公司推出的基于隐马尔可夫模型进行碱基识别的软件。它的使用需要网络连接。MinION注册用户需要获得开发者账号才能获得软件的源代码。2016年初,两个实验室分别开发Nanocall和DeepNano软件。这两个软件都可以在本地运行,不需要网络连接。Nanocall基于隐马尔可夫模型,可对1D read在本地进行碱基识别;DeepNano基于recurrent neural network framework,可以获得比隐马尔可夫模型更准确的碱基识别。

(2)序列比对工具

传统NGS序列比对软件不能满足MinION序列比对的需求。这是因为MinION测序数据错误率相对高且序列长,即使调整参数也不能取得好的效果。

MarginAlign是通过更好地估计MinION测序reads测序错误来源从而提高与参考基因组的比对效率。通过评估检测到的变异,发现其显著提高比对的准确性。由于MarginAlign是基于LAST或BWA mem的比对结果进行优化,结果的最终准确性依赖最初的比对结果。GraphMap是另一个用于MinION测序数据比对的软件。它利用的是一种启发式(heuristics)方法,对高错误率reads和长reads进行优化。一项研究表明GraphMap比对的灵敏性可与BLAST媲美,且它对reads测序错误率的估计与MarginAlign相当。

(3) 从头组装工具

MinION测序数据不适合利用NGS数据组装的de Bruijn图法进行组装,主要存在两方面的原因。第一,de Bruijn图法等方法依赖测序reads拆分的k-mer测序准确,而高错误率的MinION测序reads不能保证这一点;第二,de Bruijn图的结构不适用长reads

MinION测序数据的长reads 更适合 Sanger测序时期基于有overlap的共有(consensus)序列组装的方法。需要在组装前进行reads纠错。第一个基于这种原理进行组装的研究组利用MinION数据组装了一个完整的E. coli K-12 MG1655基因组,序列准确率达到99.5%。他们利用的流程称为nanocorrect,首先利用graph- based,greedy partial order aligner方法纠错,然后利用Celera Assembler将纠错后的reads组装,最后利用nanopolish对组装结果进一步提升。

(4)单核苷酸变异检测工具

Reference allele bias是一种在变异检测中倾向于少检测出变异的现象。该现象在测序reads错误率高的情况下尤为严重。

MarginAlign中的marginCaller模块是研究机构开发的适用于MinION测序数据的变异检测软件。MarginCaller利用maximum-likelihood参数估计多条reads序列比对来检测单核苷酸变异。当计算机模拟出测序错误为1%时,测序深度在60X,marginCaller检测出的SNV具有97%的准确率和完整度。另外一项研究中,研究者利用GraphMap方法,检测人基因组的杂合变异,可以达到96%的准确率。利用计算机模拟的数据,GraphMap同样可以高准确率,高完整度地检测出结构变异。Nanopolish也可用来检测变异。它用的是event-level alignment算法。在该方法中,从参考基因组序列开始,依次评估参考基因组序列产生的电信号与测序reads的相似性进而依次修饰参考基因组序列,生成一个consensus read。直到consensus read与测序read产生的电信号足够相似,将consensus read与参考基因组序列比较,得到变异。该方法在埃博拉病毒的研究中有大约80%的准确性。
PoreSeq采用与Nanopolish类似的算法。它可以利用更低深度的测序数据获得高准确率和高完整度的SNV检测。在一项研究中,PoreSeq在16X测序深度下获得99%准确率和完整度的SNV检测,与marginAlign相比,它显著降低了测序深度。

(5)共有序列的测序(consensus sequencing)方法

MinION测序数据目前只有92%的准确性。在低深度测序的情况下,不能够满足类似单体型(haplotype phasing)和人样品的SNV检测的要求。文章提到的解决问题的方法是rolling circle amplication,它的原理是将一个片段进行多次扩增,在一个DNA分子上生成多个拷贝,这样最终获得的共有序列测序结果的准确率可达到97%。

三、MinION目前的应用领域

1、即时检测传染源

NGS测序方法可以在医院环境下进行传染源等病菌检测,而MinION测序方法提供的是一种全新的体验。MinION在测序读长,携带的方便性,检测时长方面具有NGS不可比的优势。文献记载从样品准备到发现致病菌只需要6小时时间,而从样品放置机器到发现致病菌只需要4分钟。文章列举截至目前用MinION测序仪涉及研究的物种及详细描述西非爆发埃博拉病毒时,MinION测序方法在病毒检测过程中起到的重要作用。

2、非整倍体检测

MinION可以在胎儿非整倍体产前检测中发挥重要作用。利用NGS平台,通常需要1-3周时间获得结果。而利用MinION测序方法,文献报道只需要4小时

3 、太空应用

在太空飞行中,发掘细菌和病毒是很困难的事情。大部分研究是将样品带回地球进行测序鉴定。目前,NASA准备利用MinION测序仪在国际空间站进行病菌的实时测序

四、 展望

1. PromethION

为满足研究人员对高通量测序的需求,ONT公司开发了一个台式纳米孔测序仪—PromethION。PromethION有48个flow cell,可以单独运行也可以并行。每个flow cell包括3,000个通道(channel),每天产生6Tb测序数据。

2. 测序read准确性

目前MinION测序仪的测序准确率在92%左右。对于类似致病菌和可变剪切的发掘,这样的测序准确率可以满足需求。但是对于临床检测,通常read准确率需要达到99.99%。因此,文章提到ONT公司需要在测序相关的化学反应和碱基识别软件方面进行优化。另外,文章提到MinION测序方法存在非随机的测序错误。比如MinION不能很好处理长于6个核苷酸的同聚物的测序,同时缺少碱基修饰检测的内参训练。如果这两个问题能够得到解决,共有序列(consensus)测序的准确率可以达到大于99.99%。

3. 测序read长度

目前MinION测序长度达到150kb。在未来一段时间,可以期许其测序长度可以得到更大提升。

4. RNA直接测序

逆转录和PCR扩增会导致很多RNA自身信息的丢失,所以目前ONT公司和一些研究机构正在尝试用纳米孔技术进行RNA直接测序。之前的研究已经为此奠定基础,比如研究表明可以对tRNA进行单通道和固态纳米孔(solid-state nanopore)检测,且纳米孔可以检测DNA和tRNA的碱基修饰。

5. 单分子蛋白测序

目前,质谱(mass spectrometry)是做蛋白组分析较好的技术,但是对于灵敏性,准确性和分辨率,目前的技术都存在局限性。2013年一项研究报道酶介导的蛋白通过单通道纳米孔。这项研究表明蛋白的序列特征可以被检测。这些发现为蛋白质纳米孔测序奠定了很好的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/155137.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

知识蒸馏 Knowledge distillation(学习笔记)

知识蒸馏概述 蒸馏:把大的 复杂的东西变成小的纯净的东西 在知识蒸馏中 大的模型为 教师模型(teacher)臃肿 集成 牛逼 复杂的 小的 为 学生模型(student)小的精干的 轻量化的 这里有一个知识的迁移 因为落地实…

相关性模型与回归模型(例题代码)

一、相关性模型(SPSS) 相关性模型涉及到两种最为常用的相关系数: 皮尔逊person相关系数斯皮尔曼spearman等级相关系数 1、皮尔逊相关系数 相关性可视化 总结: 1.如果两个变量本身就是线性的关系,那么皮尔逊相关系…

儿子小伟再婚,新儿媳紧锁眉头,农民歌唱家大衣哥有些过分了

虽然都知道大衣哥儿子小伟结婚,这一天早晚都要到来,但是却没有想到来得那么快,大衣哥儿子小伟的婚礼,在悄无声息中结束了。说起大衣哥儿子小伟,这已经不是第一次结婚了,因为结过婚有经验,这一次…

Linux CFS调度器之pick_next_task函数

文章目录前言一、pick_next_task二、pick_next_task_fair参考资料前言 在内核执行__schedule函数,进程任务切换的时候,__schedule函数函数会调用pick_next_task让调度器从就绪队列中选择最合适的一个进程运行,如下所示: static …

Nerdctl 原生支持 Nydus 加速镜像

文|李楠(GitHub ID : loheagn) 北京航空航天大学 21 级研究生 云原生底层系统的开发和探索工作。 本文 6369 字 阅读 16 分钟 OSPP 开源之夏是由中科院软件研究所“开源软件供应链点亮计划”发起并长期支持的一项暑期开源活动。旨在鼓励在…

关于whl,你想知道的

一、whl是什么?whl文件时以wheel格式保存的python安装包,Wheel是Python发行版的标准内置包格式。WHL文件包含Python安装的所有文件和元数据,其中还包括所使用的Wheel版本和打包的规范。WHL文件使用Zip压缩进行压缩,实际上也是一种…

二、TCO/IP---Ethernet和IP协议

TCP/ip协议栈 OSI模型TCP/IP协议栈应用层,表示层,会话层应用层传输层主机到主机层(传输层)网络层网络层数据链路层,物理层网络接入层 Ethernet协议 以太网,实现链路层的数据传输和地址封装(MA…

【Qt】Qt中的拖放操作实现——拖放文件以及自定义拖放操作

文章目录Qt的拖放操作使用拖放打开文件自定义拖放操作文章参考《Qt Creator快速入门(第三版)》。 Qt的拖放操作 拖放操作分为拖动Drag和放下Drop,Qt提供了强大的拖放机制,可在帮助文档中通过Drag and Drop关键字查看。 在Qt中&a…

ArcGIS基础实验操作100例--实验78按栅格分区统计路网

本实验专栏参考自汤国安教授《地理信息系统基础实验操作100例》一书 实验平台:ArcGIS 10.6 实验数据:请访问实验1(传送门) 高级编辑篇--实验78 按栅格分区统计路网 目录 一、实验背景 二、实验数据 三、实验步骤 (…

【数据结构】队列详解

前言 前面我们学习了一种数据结构:栈,栈是一种只允许在一端尽进行插入删除的数据结构,而今天我们将学习另一种数据结构:队列,队列是一种支持在一端进行插入,在另一端进行删除的数据结构。 一、队列的介绍…

PHP反序列化字符串逃逸

PHP反序列化字符串逃逸 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录PHP反序列化字符串逃逸前言一、关于反序列化和序列化二、[0ctf 2016]unserialize二、prize_p5[NSSCTF]前言 例如:最近日常刷题玩…

常用的传输码介绍

文章目录前导知识1.AMI码2.HDB3码3.PST码4.数字双相码5.CMI码6.nBmB码前导知识 在介绍常用的传输码之前,先简单介绍一下直流分量。 信号的直流分量就是信号的平均值,它是一个与时间无关的常数,直流分量的数学公式表示为: 判断有…

基于轻量级YOLOv5+Transformer的汽车车损检测识别分析系统

将传统NLP领域提出来的Transformer技术与yolo目标检测模型融合已经成为一种经典的做法,早在之前的很多论文里面就有这种组合应用的出现了,本文主要是借鉴前文的思路,开发基于yolov5transformer的汽车车损检测识别模型,首先看下效果…

光流相关总结

基于图像亮度恒定假设, 图像亮度:I(x⃗,t)I(\vec x, t)I(x,t), 其中x⃗[x,y]\vec x[x,y]x[x,y],那么亮度恒定假设: I(x⃗,t)I(x⃗δx⃗,tδt)(1)I(\vec x,t)I(\vec x \delta \vec x, t \delta t) (1)I(x,t)I(xδx,tδt)(1) 对上式…

2022年值得记录的一年,事与愿违的一年

年初带着对生活的不满、怀才不遇的傲慢; 愿即将到来的30岁不留遗憾; 你放下所有去追求向往的样子; 那时所有的空气都是清新的,即使它满是灰尘; 不再年少的你依然充满新奇; 用尽力气把自己钉在那个不属…

前端与后端的技术通性

一、后端的JDK相当于前端的Node.js, 后端的JVM相当于前端的V8引擎【作用示例图,如下所示】 【Nodejs、JDK分别是前后端的运行环境】 二、后端的Maven(基于项目对象模型-Project Object Model-POM的项目管理机制)相当于前端的npm(n…

FlinkCDC

目录1、CDC 简介1.1、什么是CDC1.2、CDC的种类1.3、Flink-CDC2、Flink CDC 网址3、运行原理5、简要安装6、开发案例7、扩展1、CDC 简介 1.1、什么是CDC CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动…

js实现网页特效

文章目录一、元素偏移量offest系列🥇offset与style的区别🎓案例1🦹🏽‍♂️案例2🐼案例3二、元素可视区client系列三、元素滚动scroll系列🏂🏿案例4:🔭补充 mouseenter事…

大数据分析案例-基于KNN算法对茅台股票进行预测

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…

一个精美的主界面窗口功能的设计和实现原来如此简单,万字肝爆

👨‍💻个人主页:元宇宙-秩沅 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 秩沅 原创 收录于专栏 玩归玩闹归闹,别拿java开玩笑 —————————————————— ⭐相关文章⭐ -通过窗口看…