MySql实战--事务到底是隔离的还是不隔离的

news2025/1/12 12:21:20

第3篇文章和你讲事务隔离级别的时候提到过,如果是可重复读隔离级别,事务T启动的时候会创建一个视图read-view,之后事务T执行期间,即使有其他事务修改了数据,事务T看到的仍然跟在启动时看到的一样。也就是说,一个在可重复读隔离级别下执行的事务,好像与世无争,不受外界影响。

但是,我在上一篇文章中,和你分享行锁的时候又提到,一个事务要更新一行,如果刚好有另外一个事务拥有这一行的行锁,它又不能这么超然了,会被锁住,进入等待状态。问题是,既然进入了等待状态,那么等到这个事务自己获取到行锁要更新数据的时候,它读到的值又是什么呢?

我给你举一个例子吧。下面是一个只有两行的表的初始化语句。

图1 事务A、B、C的执行流程

这里,我们需要注意的是事务的启动时机。

begin/start transaction 命令并不是一个事务的起点,在执行到它们之后的第一个操作InnoDB表的语句,事务才真正启动。如果你想要马上启动一个事务,可以使用start transaction with consistent snapshot 这个命令。

第一种启动方式,一致性视图是在执行第一个快照读语句时创建的; 第二种启动方式,一致性视图是在执行start transaction with consistent snapshot时创建的。

还需要注意的是,在整个专栏里面,我们的例子中如果没有特别说明,都是默认autocommit=1。

在这个例子中,事务C没有显式地使用begin/commit,表示这个update语句本身就是一个事务,语句完成的时候会自动提交。事务B在更新了行之后查询; 事务A在一个只读事务中查询,并且时间顺序上是在事务B的查询之后。

这时,如果我告诉你事务B查到的k的值是3,而事务A查到的k的值是1,你是不是感觉有点晕呢?

所以,今天这篇文章,我其实就是想和你说明白这个问题,希望借由把这个疑惑解开的过程,能够帮助你对InnoDB的事务和锁有更进一步的理解。

在MySQL里,有两个“视图”的概念:

  • 一个是view。它是一个用查询语句定义的虚拟表,在调用的时候执行查询语句并生成结果。创建视图的语法是create view … ,而它的查询方法与表一样。

  • 另一个是InnoDB在实现MVCC时用到的一致性读视图,即consistent read view,用于支持RC(Read Committed,读提交)和RR(Repeatable Read,可重复读)隔离级别的实现。

它没有物理结构,作用是事务执行期间用来定义“我能看到什么数据”。

今天为了说明查询和更新的区别,我换一个方式来说明,把read view拆开。你可以结合这两篇文章的说明来更深一步地理解MVCC。

“快照”在MVCC里是怎么工作的?

在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。注意,这个快照是基于整库的。

这时,你会说这看上去不太现实啊。如果一个库有100G,那么我启动一个事务,MySQL就要拷贝100G的数据出来,这个过程得多慢啊。可是,我平时的事务执行起来很快啊。

实际上,我们并不需要拷贝出这100G的数据。我们先来看看这个快照是怎么实现的。

InnoDB里面每个事务有一个唯一的事务ID,叫作transaction id。它是在事务开始的时候向InnoDB的事务系统申请的,是按申请顺序严格递增的。

而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把transaction id赋值给这个数据版本的事务ID,记为row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。

也就是说,数据表中的一行记录,其实可能有多个版本(row),每个版本有自己的row trx_id。

如图2所示,就是一个记录被多个事务连续更新后的状态。

图2 行状态变更图

图中虚线框里是同一行数据的4个版本,当前最新版本是V4,k的值是22,它是被transaction id 为25的事务更新的,因此它的row trx_id也是25。

你可能会问,前面的文章不是说,语句更新会生成undo log(回滚日志)吗?那么,undo log在哪呢?

实际上,图2中的三个虚线箭头,就是undo log;而V1、V2、V3并不是物理上真实存在的,而是每次需要的时候根据当前版本和undo log计算出来的。比如,需要V2的时候,就是通过V4依次执行U3、U2算出来。

明白了多版本和row trx_id的概念后,我们再来想一下,InnoDB是怎么定义那个“100G”的快照的。

按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。

因此,一个事务只需要在启动的时候声明说,“以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本”。

当然,如果“上一个版本”也不可见,那就得继续往前找。还有,如果是这个事务自己更新的数据,它自己还是要认的。

在实现上, InnoDB为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务ID。“活跃”指的就是,启动了但还没提交。

数组里面事务ID的最小值记为低水位,当前系统里面已经创建过的事务ID的最大值加1记为高水位。

这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。

而数据版本的可见性规则,就是基于数据的row trx_id和这个一致性视图的对比结果得到的。

这个视图数组把所有的row trx_id 分成了几种不同的情况。

图3 数据版本可见性规则

这样,对于当前事务的启动瞬间来说,一个数据版本的row trx_id,有以下几种可能:

  1. 如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;

  1. 如果落在红色部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;

  1. 如果落在黄色部分,那就包括两种情况 a.  若 row trx_id在数组中,表示这个版本是由还没提交的事务生成的,不可见; b.  若 row trx_id不在数组中,表示这个版本是已经提交了的事务生成的,可见。

比如,对于图2中的数据来说,如果有一个事务,它的低水位是18,那么当它访问这一行数据时,就会从V4通过U3计算出V3,所以在它看来,这一行的值是11。

你看,有了这个声明后,系统里面随后发生的更新,是不是就跟这个事务看到的内容无关了呢?因为之后的更新,生成的版本一定属于上面的2或者3(a)的情况,而对它来说,这些新的数据版本是不存在的,所以这个事务的快照,就是“静态”的了。

所以你现在知道了,InnoDB利用了“所有数据都有多个版本”的这个特性,实现了“秒级创建快照”的能力。

接下来,我们继续看一下图1中的三个事务,分析下事务A的语句返回的结果,为什么是k=1。

这里,我们不妨做如下假设:

  1. 事务A开始前,系统里面只有一个活跃事务ID是99;

  1. 事务A、B、C的版本号分别是100、101、102,且当前系统里只有这四个事务;

  1. 三个事务开始前,(1,1)这一行数据的row trx_id是90。

这样,事务A的视图数组就是[99,100], 事务B的视图数组是[99,100,101], 事务C的视图数组是[99,100,101,102]。

为了简化分析,我先把其他干扰语句去掉,只画出跟事务A查询逻辑有关的操作:

图4 事务A查询数据逻辑图

从图中可以看到,第一个有效更新是事务C,把数据从(1,1)改成了(1,2)。这时候,这个数据的最新版本的row trx_id是102,而90这个版本已经成为了历史版本。

第二个有效更新是事务B,把数据从(1,2)改成了(1,3)。这时候,这个数据的最新版本(即row trx_id)是101,而102又成为了历史版本。

你可能注意到了,在事务A查询的时候,其实事务B还没有提交,但是它生成的(1,3)这个版本已经变成当前版本了。但这个版本对事务A必须是不可见的,否则就变成脏读了。

好,现在事务A要来读数据了,它的视图数组是[99,100]。当然了,读数据都是从当前版本读起的。所以,事务A查询语句的读数据流程是这样的:

  • 找到(1,3)的时候,判断出row trx_id=101,比高水位大,处于红色区域,不可见;

  • 接着,找到上一个历史版本,一看row trx_id=102,比高水位大,处于红色区域,不可见;

  • 再往前找,终于找到了(1,1),它的row trx_id=90,比低水位小,处于绿色区域,可见。

这样执行下来,虽然期间这一行数据被修改过,但是事务A不论在什么时候查询,看到这行数据的结果都是一致的,所以我们称之为一致性读。

这个判断规则是从代码逻辑直接转译过来的,但是正如你所见,用于人肉分析可见性很麻烦。

所以,我来给你翻译一下。一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:

  1. 版本未提交,不可见;

  1. 版本已提交,但是是在视图创建后提交的,不可见;

  1. 版本已提交,而且是在视图创建前提交的,可见。

现在,我们用这个规则来判断图4中的查询结果,事务A的查询语句的视图数组是在事务A启动的时候生成的,这时候:

  • (1,3)还没提交,属于情况1,不可见;

  • (1,2)虽然提交了,但是是在视图数组创建之后提交的,属于情况2,不可见;

  • (1,1)是在视图数组创建之前提交的,可见。

你看,去掉数字对比后,只用时间先后顺序来判断,分析起来是不是轻松多了。所以,后面我们就都用这个规则来分析。

更新逻辑

细心的同学可能有疑问了:事务B的update语句,如果按照一致性读,好像结果不对哦?

你看图5中,事务B的视图数组是先生成的,之后事务C才提交,不是应该看不见(1,2)吗,怎么能算出(1,3)来?

图5 事务B更新逻辑图

是的,如果事务B在更新之前查询一次数据,这个查询返回的k的值确实是1。

但是,当它要去更新数据的时候,就不能再在历史版本上更新了,否则事务C的更新就丢失了。因此,事务B此时的set k=k+1是在(1,2)的基础上进行的操作。

所以,这里就用到了这样一条规则:更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。

因此,在更新的时候,当前读拿到的数据是(1,2),更新后生成了新版本的数据(1,3),这个新版本的row trx_id是101。

所以,在执行事务B查询语句的时候,一看自己的版本号是101,最新数据的版本号也是101,是自己的更新,可以直接使用,所以查询得到的k的值是3。

这里我们提到了一个概念,叫作当前读。其实,除了update语句外,select语句如果加锁,也是当前读。

所以,如果把事务A的查询语句select * from t where id=1修改一下,加上lock in share mode 或 for update,也都可以读到版本号是101的数据,返回的k的值是3。下面这两个select语句,就是分别加了读锁(S锁,共享锁)和写锁(X锁,排他锁)。

mysql> select k from t where id=1 lock in share mode;
mysql> select k from t where id=1 for update;

再往前一步,假设事务C不是马上提交的,而是变成了下面的事务C’,会怎么样呢?

图6 事务A、B、C'的执行流程

事务C’的不同是,更新后并没有马上提交,在它提交前,事务B的更新语句先发起了。前面说过了,虽然事务C’还没提交,但是(1,2)这个版本也已经生成了,并且是当前的最新版本。那么,事务B的更新语句会怎么处理呢?

这时候,我们在上一篇文章中提到的“两阶段锁协议”就要上场了。事务C’没提交,也就是说(1,2)这个版本上的写锁还没释放。而事务B是当前读,必须要读最新版本,而且必须加锁,因此就被锁住了,必须等到事务C’释放这个锁,才能继续它的当前读。

图7 事务B更新逻辑图(配合事务C')

到这里,我们把一致性读、当前读和行锁就串起来了。

现在,我们再回到文章开头的问题:事务的可重复读的能力是怎么实现的?

可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。

而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:

  • 在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;

  • 在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。

那么,我们再看一下,在读提交隔离级别下,事务A和事务B的查询语句查到的k,分别应该是多少呢?

这里需要说明一下,“start transaction with consistent snapshot; ”的意思是从这个语句开始,创建一个持续整个事务的一致性快照。所以,在读提交隔离级别下,这个用法就没意义了,等效于普通的start transaction。

下面是读提交时的状态图,可以看到这两个查询语句的创建视图数组的时机发生了变化,就是图中的read view框。(注意:这里,我们用的还是事务C的逻辑直接提交,而不是事务C’)

图8 读提交隔离级别下的事务状态图

这时,事务A的查询语句的视图数组是在执行这个语句的时候创建的,时序上(1,2)、(1,3)的生成时间都在创建这个视图数组的时刻之前。但是,在这个时刻:

  • (1,3)还没提交,属于情况1,不可见;

  • (1,2)提交了,属于情况3,可见。

所以,这时候事务A查询语句返回的是k=2。

显然地,事务B查询结果k=3。

小结

InnoDB的行数据有多个版本,每个数据版本有自己的row trx_id,每个事务或者语句有自己的一致性视图。普通查询语句是一致性读,一致性读会根据row trx_id和一致性视图确定数据版本的可见性。

  • 对于可重复读,查询只承认在事务启动前就已经提交完成的数据;

  • 对于读提交,查询只承认在语句启动前就已经提交完成的数据;

而当前读,总是读取已经提交完成的最新版本。

你也可以想一下,为什么表结构不支持“可重复读”?这是因为表结构没有对应的行数据,也没有row trx_id,因此只能遵循当前读的逻辑。

当然,MySQL 8.0已经可以把表结构放在InnoDB字典里了,也许以后会支持表结构的可重复读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1548314.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【zip技巧】4种方法,删除ZIP压缩包密码

之前给大家介绍了zip压缩包加密方法,那么zip压缩包取消密码,大家了解多少呢?有密码的情况下,有哪些方法可以取消密码?无密码又该如何取消密码?今天总结四个方法分享给大家。 一、 最原始的方法&#xff0…

“Hands-free AG audio“和“Stereo“的区别

用蓝牙连接耳机后,发现有两个选项 一个音量大,一个音质好,好奇去查了查。 “Hands-free AG audio”(自由通话音频)是指一种技术或功能,可以使您在进行通话时无需使用手部操作或接触设备。这通常适用于汽车…

Spring:面试八股

文章目录 参考Spring模块CoreContainerAOP 参考 JavaGuide Spring模块 CoreContainer Spring框架的核心模块,主要提供IoC依赖注入功能的支持。内含四个子模块: Core:基本的核心工具类。Beans:提供对bean的创建、配置、管理功能…

智能文档处理技术综述

一、 智能文档处理介绍 智能文档处理(Intelligent Document Processing, IDP)是利用人工智能(AI)、机器学习(ML)、计算机视觉(CV)、自然语言处理(NLP)等技术…

【WEEK4】 【DAY5】AJAX第二部分【中文版】

2024.3.22 Friday 接上文【WEEK4】 【DAY4】AJAX第一部分【中文版】 目录 8.4.Ajax异步加载数据8.4.1.新建User.java8.4.2.在pom.xml中添加lombok、jackson支持8.4.3.更改tomcat设置8.4.4.修改AjaxController.java8.4.5.新建test2.jsp8.4.5.1.注意:和WEB-INF平级&…

R语言学习——Rstudio软件

R语言免费但有点难上手,是数据挖掘的入门级别语言,拥有顶级的可视化功能。 优点: 1统计分析(可以实现各种分析方法)和计算(有很多函数) 2强大的绘图功能 3扩展包多,适合领域多 …

实现UI自动化测试,这5个常见问题你必须知道!

UI自动化测试一直都是如此的令人纠结,自动化测试初学者总是拿它入门,但有些经验丰富者对其又是毁誉参半,抑或抛出分层自动化测试那个经典的“金字塔”,来说明UI自动化测试还是少做为好。 我在从事7年产品研发之后,临危…

【学习】软件测试行业有哪些从业方向

从事任何一个行业,不论想入行的新人还是已经在职的从业人员,一定要系统化的掌握自身的学习路线和发展方向,随时对自身的优劣点掌握清楚。尤其是对于软件测试这个岗位。测试职业所涉及的技能范围比较广,测试流程、测试计划、缺陷管…

Linux如何将桌面版转为mini版-解决中文字体变为英文字体

中文字体转为英文字体 我们进入Rocky-Linux后,ls或者打开文件夹发现有中文 我们执行命令 sudo localedef -i en_US -f UTF-8 en_US.UTF-8将其转为英文,并且重启机器 此时中文转化为英文 桌面版linux转为MINN版 1. 我们可以卸载桌面版 sudo dnf gr…

每日一题——LeetCode1748.唯一元素的和

方法一 两次遍历 var sumOfUnique function(nums) {let map new Map()for(let num of nums){map.set(num,map.has(num)?map.get(num)1:1)}let res0for(let num of nums){if(map.get(num)1) resnum}return res }; 消耗时间和内存情况: 方法二 一次遍历 var su…

VMware下建立CentOS 7

1.点击新建虚拟机 2.下一步 3.选择号安装程序光盘映像文件位置,下一步 4.选择版本和操作系统然后下一步 5.编辑虚拟机名称并选择安装位置,然后下一步 6.设置最大磁盘大小,下一步 7.点击完成 8.点击编辑虚拟机设置 9.将此虚拟机内存设置为2G&a…

如何搭建selenium自动化测试框架?selenium自动化测试环境搭建(webdriver+Python框架)

一、安装Python 选择Python版本后,进入Python官方网站下载适配机型版本:http://www.python.org/ 二、安装setuptools和pip setuptools下载地址:https://pypi.python.org/pypi/setuptools pip下载地址:https://pypi.python.org/py…

推荐多样性 - 华为OD统一考试(C卷)

OD统一考试(C卷) 分值: 200分 题解: Java / Python / C++ 题目描述 推荐多样性需要从多个列表中选择元素,一次性要返回N屏数据(窗口数量),每屏展示K个元素(窗口大小),选择策略: 各个列表元素需要做穿插处理,即先从第一个列表中为每屏选择一个元素,再从第二个列表…

【前端面试3+1】02插槽、箭头函数与普通函数、重绘重排、【回文数】

一、对插槽的理解 1.定义及作用: 插槽是一种用于在组件中插入内容的特殊语法。它的作用是让父组件可以向子组件传递内容,从而实现组件的灵活性和复用性。 2.分类: 插槽可以分为具名插槽和作用域插槽。 2.1具名插槽: 具名插槽允许父…

图书推荐|Django+Vue.js商城项目实战

一线资深架构师 凝聚近十年大型系统开发经验 倾力打造 双色印刷 适合:项目演练求职应聘技术提升 全新:Django 4.x与Vue.js 3.x全栈技术 易学:娓娓道来图示指引原理剖析步骤解说代码详注 真实企业级项目技术细节完整揭秘,照着做就…

SEO 的未来:GPT 和 AI 如何改变关键词研究

谷歌Gemini与百度文心一言:AI训练数据的较量 介绍 想象一下,有一个工具不仅可以理解错综复杂的关键字网络,还可以预测搜索引擎查询的变化趋势。 这就是生成式预训练 Transformer (GPT) 和其他人工智能技术发挥作用的地方,以我们从…

Android studio汉化(2023最新版)

1.打开Android studio,找上面一栏中的Help,然后点击最下方的about 点击About 2.查看自己的版本 3. 点击进入网站,选择自己的版本并下载Versions: Chinese (Simplified) Language Pack / 中文语言包 - IntelliJ IDEs Plugin | Marketplace (jetbrains.com) 点击Get 4…

【LVGL-Flex布局和Grid布局】

LVGL-Flex布局和Grid布局 ■ Flex 布局■ 主轴 : 是定义对象的放置方向的■ 演示一:LV_FLEX_FLOW_ROW■ 演示二:LV_FLEX_FLOW_ROW_WRAP■ 演示三:LV_FLEX_FLOW_ROW_REVERSE■ 演示四:LV_FLEX_FLOW_ROW_WRAP_REVERSW■ 演示五&…

RK3568笔记二十一:YOLOv8 实例分割部署

若该文为原创文章,转载请注明原文出处。 参考rknn_model_zoo部署YOLOv8 实例分割. 一、环境 1、测试训练环境:AutoDL. 2、平台:rk3568 3、开发板: ATK-RK3568正点原子板子 4、环境:buildroot 5、虚拟机:正点原子…

如何避免SQL注入攻击?

🐓序言 当涉及到数据库操作时,防止SQL注入攻击至关重要。SQL注入是一种常见的网络安全威胁,攻击者通过在用户输入中插入恶意的SQL代码,从而可以执行未经授权的数据库操作。 🐓避免方式 使用参数化查询 使用参数化查询…