数据分析与挖掘

news2025/1/16 1:41:07

数据起源:

规模庞大,结构复杂,难以通过现有商业工具和技术在可容忍的时间内获取、管理和处理的数据集。具有5V特性:数量(Volume):数据量大、多样性(Variety):种类繁多、速度(Volocity):处理速度快、真实性(Veracity)、数据价值:价值密度低(Value)。

数据处理的三驾马车:

  • 分布式文件系统GFS
  • 大数据分布式计算框架MapReduce
  • NoSQL数据库系统BigTable

搜索引擎主要就做两件事情:网页抓取和索引构建。三驾马车”就是用来解决这个过程中大量的数据存储和计算。一个文件系统、一个计算框架、一个数据库系统。

Doug Cutting根据三驾马车论文原理初步实现了类似GFS和MapReduce的功能,后来将这些大数据相关的功能从开源搜索引擎Nutch中分离了出来,然后启动了一个独立的项目专门开发维护大数据技术——Hadoop,主要包括Hadoop分布式文件系统HDFS和大数据计算引擎MapReduce。

Yahoo的一些人觉得用MapReduce进行大数据编程太麻烦了,于是便开发了Pig。Pig是一种脚本语言,使用类SQL的语法,开发者可以用Pig脚本描述要对大数据集上进行的操作,Pig经过编译后会生成MapReduce程序,然后在Hadoop上运行。

编写Pig脚本虽然比直接MapReduce编程容易,但是依然需要学习新的脚本语法。于是Facebook又发布了Hive。Hive支持使用SQL语法来进行大数据计算,然后Hive会把SQL语句转化成MapReduce的计算程序(2011年的时候,Facebook大数据平台上运行的作业90%都来源于Hive)。

随后,众多Hadoop周边产品开始出现,大数据生态体系逐渐形成,其中包括:专门将关系数据库中的数据导入导出到Hadoop平台的Sqoop;针对大规模日志进行分布式收集、聚合和传输的Flume;MapReduce工作流调度引擎Oozie等。Yarn把MapReduce执行引擎和资源调度分离开来,Yarn成为大数据平台上最主流的资源调度系统。

由于MapReduce进行机器学习计算的时候性能非常差,因为机器学习算法通常需要进行很多次的迭代计算,而MapReduce每执行一次Map和Reduce计算都需要重新启动一次作业,带来大量的无谓消耗。还有一点就是MapReduce主要使用磁盘作为存储介质。于是出现了Spark,一经推出立即受到业界的追捧,并逐步替代MapReduce在企业应用中的地位。

一般说来,像MapReduce、Spark这类计算框架处理的业务场景都被称作批处理计算,因为它们通常针对以“天”为单位产生的数据进行一次计算,然后得到需要的结果,这中间计算需要花费的时间大概是几十分钟甚至更长的时间。因为计算的数据是非在线得到的实时数据,而是历史数据,所以这类计算也被称为大数据离线计算

在大数据领域,还有另外一类应用场景,它们需要对实时产生的大量数据进行即时计算,比如对于遍布城市的监控摄像头进行人脸识别和嫌犯追踪。这类计算称为大数据流计算,相应地,有Storm、Flink、Spark Streaming等流计算框架来满足此类大数据应用的场景。 流式计算要处理的数据是实时在线产生的数据,所以这类计算也被称为大数据实时计算

数据业务最通用的做法是,采用批处理的技术处理历史全量数据,采用流式计算处理实时新增数据。而像Flink这样的计算引擎,可以同时支持流式计算和批处理计算。

除了大数据批处理和流处理,NoSQL系统处理的主要也是大规模海量数据的存储与访问,所以也被归为大数据技术。大数据处理的主要应用场景包括数据分析、数据挖掘与机器学习。数据分析主要使用Hive、Spark SQL等SQL引擎完成;数据挖掘与机器学习则有专门的机器学习框架TensorFlow、Mahout以及MLlib等,内置了主要的机器学习和数据挖掘算法。大数据要存入分布式文件系统(HDFS),要有序调度MapReduce和Spark作业执行,并能把执行结果写入到各个应用系统的数据库中,还需要有一个大数据平台整合所有这些大数据组件和企业应用系统。

大数据应用:

搜索引擎时代:Google开发了GFS(Google文件系统),将数千台服务器上的数万块磁盘统一管理起来,然后当作一个文件系统,统一存储所有这些网页文件。Google得到这些网页文件是要构建搜索引擎,需要对所有文件中的单词进行词频统计,然后根据PageRank算法计算网页排名。基于这些需求,Google又开发了MapReduce大数据计算框架。

数据仓库时代:Hive可以在Hadoop上进行SQL操作,实现数据统计与分析。也就是说,我们可以用更低廉的价格获得比以往多得多的数据存储与计算能力。我们可以把运行日志、应用采集数据、数据库数据放到一起进行计算分析,获得以前无法得到的数据结果。

数据挖掘时代:除了数据统计,我们还希望发掘出更多数据的价值,发现数据之间关联性。

机器学习时代:在过去,我们受数据采集、存储、计算能力的限制,只能通过抽样的方式获取小部分数据,无法得到完整的、全局的、细节的规律。而现在有了大数据,可以把全部的历史数据都收集起来,统计其规律,进而预测正在发生的事情。

医疗健康领域:医学影像智能识别、病历大数据智能诊疗

教育领域: AI外语老师、智能解题

金融领域:大数据风控、量化交易

社交媒体领域:舆情监控与分析

新零售领域:全链路管理。从生产、物流、购物体验,使用大数据进行分析和预判,实现精准生产、零库存

交通领域:无人驾驶技术

大数据的存储:

  • 单机时代,主要的解决方案是RAID(独立磁盘冗余阵列)
  • 分布式时代,主要解决方案是分布式文件系统

大规模数据存储都需要解决核心问题:数据存储容量的问题;数据读写速度的问题;数据可靠性的问题。

RAID(独立磁盘冗余阵列)技术是将多块普通磁盘组成一个阵列,共同对外提供服务。主要是为了改善磁盘的存储容量、读写速度,增强磁盘的可用性和容错能力。目前服务器级别的计算机都支持插入多块磁盘(8块或者更多),通过使用RAID技术,实现数据在多块磁盘上的并发读写和数据备份。

  1. 数据存储容量的问题。RAID使用了N块磁盘构成一个存储阵列,如果使用RAID 5,数据就可以存储在N-1块磁盘上,这样将存储空间扩大了N-1倍。
  2. 数据读写速度的问题。RAID根据可以使用的磁盘数量,将待写入的数据分成多片,并发同时向多块磁盘进行写入,显然写入的速度可以得到明显提高;同理,读取速度也可以得到明显提高。不过,需要注意的是,由于传统机械磁盘的访问延迟主要来自于寻址时间,数据真正进行读写的时间可能只占据整个数据访问时间的一小部分,所以数据分片后对N块磁盘进行并发读写操作并不能将访问速度提高N倍。

  3. 数据可靠性的问题。使用RAID 10、RAID 5或者RAID 6方案的时候,由于数据有冗余存储,或者存储校验信息,所以当某块磁盘损坏的时候,可以通过其他磁盘上的数据和校验数据将丢失磁盘上的数据还原。

实现更强的计算能力和更大规模的数据存储有两种思路,一种是升级计算机,一种是用分布式系统。前一种也被称作“垂直伸缩”(scaling up),通过升级CPU、内存、磁盘等将一台计算机变得更强大;后一种是“水平伸缩”(scaling out),添加更多的计算机到系统中,从而实现更强大的计算能力。HDFS则是水平伸缩,通过添加更多的服务器实现数据更大、更快、更安全存储与访问。

RAID技术只是在单台服务器的多块磁盘上组成阵列,大数据需要更大规模的存储空间和更快的访问速度。将RAID思想原理应用到分布式服务器集群上,就形成了Hadoop分布式文件系统HDFS的架构思想。

大数据技术框架:

存储 – HDFS 应用场景

最基本的存储技术是HDFS。比如把通过各种渠道得到的数据,比如关系数据库的数据、日志数据、应用程序埋点采集的数据、爬虫从外部获取的数据,统统存储到HDFS上,供后续的统一使用。

存储 – HBase 应用场景

HBase作为NoSQL类非关系数据库的代表性产品,从分类上可以划分到存储类别,它的底层存储也用到了HDFS。HBase的主要用途是在某些场景下,代替MySQL之类的关系数据库的数据存储访问,利用自己可伸缩的特性,存储比MySQL多得多的数据量。

计算 – 离线大数据处理技术

大数据计算框架最早是MapReduce,目前看来,用的最多的是Spark,通常我们会用Hive或者Spark SQL这样的大数据仓库工具进行大数据分析和计算。MapReduce、Spark、Hive、Spark SQL这些技术主要用来解决离线大数据的计算,也就是针对历史数据进行计算分析,比如针对一天的历史数据计算,一天的数据是一批数据,所以也叫批处理计算。

计算 – 流处理大数据技术

而Storm、Spark Streaming、Flink这类的大数据技术是针对实时的数据进行计算,比如摄像头实时采集的数据、实时的订单数据等,数据实时流动进来,所以也叫流处理大数据技术。

资源管理 – Yarn

不管是批处理计算还是流处理计算,都需要庞大的计算资源,需要将计算任务分布到一个大规模的服务器集群上。那么如何管理这些服务器集群的计算资源,如何对一个计算请求进行资源分配,这就是大数据集群资源管理框架Yarn的主要作用。各种大数据计算引擎,不管是批处理还是流处理,都可以通过Yarn进行资源分配,运行在一个集群中。在由很多台服务器组成的服务器集群中,某台服务器可能运行着HDFS的DataNode进程,负责HDFS的数据存储;同时也运行着Yarn的NodeManager,负责计算资源的调度管理;而MapReduce、Spark、Storm、Flink这些批处理或者流处理大数据计算引擎则通过Yarn的调度,运行在NodeManager的容器(container)里面。

大数据基准测试工具HiBench:是Intel推出的一个大数据基准测试工具。大数据作为一个生态体系,不但有各种直接进行大数据处理的平台和框架,比如HDFS、MapReduce、Spark,还有很多周边的支撑工具,而大数据基准测试工具就是其中一个大类。作用是对各种大数据产品进行测试,检验大数据产品在不同硬件平台、不同数据量、不同计算任务下的性能表现。

HiBench内置了若干主要的大数据计算程序作为基准测试的负载(workload)。

  • Sort,对数据进行排序大数据程序。
  • WordCount,前面多次提到过,词频统计大数据计算程序。

  • TeraSort,对1TB数据进行排序,最早是一项关于软件和硬件的计算力的竞赛,所以很多大数据平台和硬件厂商进行产品宣传的时候会用TeraSort成绩作为卖点。

  • Bayes分类,机器学习分类算法,用于数据分类和预测。

  • k-means聚类,对数据集合规律进行挖掘的算法。

  • 逻辑回归,数据进行预测和回归的算法。

  • SQL,包括全表扫描、聚合操作(group by)、连接操作(join)几种典型查询SQL。

  • PageRank,Web排序算法。

Hibench的编译需要java环境 (java 环境配置(详细教程)_java环境配置-CSDN博客)和maven(maven的下载与安装教程(超详细)_maven安装-CSDN博客),Spark2.4.0,Scala2.11.12。

下载:https://github.com/Intel-bigdata/HiBench,下载好后解压缩到目录下,进入该目录编译:

大数据平台:

大数据计算通过将可执行的代码分发到大规模的服务器集群上进行分布式计算,以处理大规模的数据,即所谓的移动计算比移动数据更划算。但是在分布式系统中分发执行代码并启动执行,这样的计算方式必然不会很快,即使在一个规模不太大的数据集上进行一次简单计算,MapReduce也可能需要几分钟,Spark快一点,也至少需要数秒的时间。

而互联网产品处理用户请求,需要毫秒级的响应,也就是说,要在1秒内完成计算,因此大数据计算必然不能实现这样的响应要求。但是互联网应用又需要使用大数据,实现统计分析、数据挖掘、关联推荐、用户画像等一系列功能。因此要构建一个大数据平台,互联网大数据平台的架构:

大数据平台里面向用户的在线业务处理组件用褐色标示出来,这部分是属于互联网在线应用的部分,其他蓝色的部分属于大数据相关组件,使用开源大数据产品或者自己开发相关大数据组件。大数据平台由上到下可分为三个部分:数据采集、数据处理、数据输出与展示。

数据采集

将应用程序产生的数据和日志等同步到大数据系统中,由于数据源不同,这里的数据同步系统实际上是多个相关系统的组合。数据库同步通常用Sqoop,日志同步可以选择Flume,打点采集的数据经过格式化转换后通过Kafka等消息队列进行传递。

数据处理

这部分是大数据存储与计算的核心,数据同步系统导入的数据存储在HDFS。MapReduce、Hive、Spark等计算任务读取HDFS上的数据进行计算,再将计算结果写入HDFS。MapReduce、Hive、Spark等进行的计算处理被称作是离线计算,HDFS存储的数据被称为离线数据。在大数据系统上进行的离线计算通常针对(某一方面的)全体数据,比如针对历史上所有订单进行商品的关联性挖掘,这时候数据规模非常大,需要较长的运行时间,这类计算就是离线计算。

数据输出与展示

,大数据计算产生的数据还是写入到HDFS中,但应用程序不可能到HDFS中读取数据,所以必须要将HDFS中的数据导出到数据库中。数据同步导出相对比较容易,计算产生的数据都比较规范,稍作处理就可以用Sqoop之类的系统导出到数据库。

将上面三个部分整合起来的是任务调度管理系统,不同的数据何时开始同步,各种MapReduce、Spark任务如何合理调度才能使资源利用最合理、等待的时间又不至于太久,同时临时的重要任务还能够尽快执行,这些都需要任务调度管理系统来完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1541617.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于VS code 实现Java前后端打通—基础—使用Springboot+postgreSql+mybatis+Navicat

前言: 作者学习webjava后的而总结,总的流程概括就是先使用springboot创建项目,在application.properties中完成相应的postgreSql和mybaits的环境配置和.xml文件中dependecy依赖配置,entities实现数据表的类型模板,分别…

隐私计算实训营学习四:SecretFlow的安装和部署

文章目录 一、SecretFlow安装二、SecretFolw部署模式简介三、SecretFlow部署-仿真模式四、SecretFlow部署-生产模式 一、SecretFlow安装 SecretFlow运行要求: Python > 3.8操作系统:CentOS7、Anolis8、Ubuntu 18.04/20.04、macOS 11.1、WSL2资源&am…

前端框架前置课(1)---AJAX阶段

1. AJAX入门 1.1 AJAX概念和axios使用 1.1.1 什么是AJAX? 1.1.2 怎么用AJAX? 引入axios.js 获取省份列表数据 1.2 认识URL 1.3 URL查询参数 1.4 常用请求方和数据提交 1.5 HTTP协议-报文 1.5.1 HTTP响应状态码 1.5.1.1 状态码:1XX(信息&#xff09…

论文阅读:UniFormer和UniFormerV2

文章目录 UNIFormer动机方法动态位置嵌入(DPE)多头关系聚合器(MHRA) 模型代码总结 UniFormerV2动机方法整体框架实现细节 总结 UNIFormer 本文主要介绍了UniFormer: Unified Transformer for Efficient Spatial-Temporal Representation Learning 代码:https://git…

购买腾讯云服务器需要多少钱?价格表查询

腾讯云服务器多少钱一年?61元一年起。2024年最新腾讯云服务器优惠价格表,腾讯云轻量2核2G3M服务器61元一年、2核2G4M服务器99元一年可买三年、2核4G5M服务器165元一年、3年756元、轻量4核8M12M服务器646元15个月、4核16G10M配置32元1个月、312元一年、8核…

Python综合实战案例-数据清洗分析

写在前面: 本次是根据前文讲解的爬虫、数据清洗、分析进行的一个纵隔讲解案例,也是对自己这段时间python爬虫、数据分析方向的一个总结。 本例设计一个豆瓣读书数据⽂件,book.xlsx⽂件保存的是爬取豆瓣⽹站得到的图书数据,共 6067…

html网页制作-3D旋转卡片

网页制作-3D旋转卡片 两种旋转卡片的制作 旋转卡片&#xff08;1&#xff09; 代码 html代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-wid…

Transformer的前世今生 day03(Word2Vec、如何使用在下游任务中)

前情回顾 由上一节&#xff0c;我们可以得到&#xff1a; 任何一个独热编码的词都可以通过Q矩阵得到一个词向量&#xff0c;而词向量有两个优点&#xff1a; 可以改变输入的维度&#xff08;原来是很大的独热编码&#xff0c;但是我们经过一个Q矩阵后&#xff0c;维度就可以控…

linux命令(八)

搜索 其实很多人使用linux的是因为服务器是linux系统&#xff0c;既然是服务器&#xff0c;那查找日志肯定是大家用的很多的了&#xff0c;这一节就来介绍一下搜索的命令 grep 先看一下我的文件中的内容是什么 查找不包含该字符串的行 -v v代表的invert-match(不匹配的行) …

基于Java中的SSM框架实现电能计量与客户服务管理系统项目【项目源码+论文说明】计算机毕业设计

基于Java中的SSM框架实现电能计量与客户服务管理系统演示 摘要 当前时代的两个突出特征是世界经济一体化和以计算机为代表的信息技术的迅速发展。为了使组织在激烈的竞争中保持实力和发展&#xff0c;它必须对迅速变化的环境做出有效而有效的响应。 管理信息系统的应用可以提供…

202446读书笔记|《夜风颂》——生命的内核是过往和希望 有情在朝暮 长聚长相思

202446读书笔记|《夜风颂》——生命的内核是过往和希望 有情在朝暮 长聚长相思 序现代诗古体诗 《夜风颂》作者王锴&#xff0c;前段时间加入书架的书&#xff0c;前边有几首现代诗挺惊艳&#xff0c;蛮喜欢的&#xff0c;后边古体诗稍逊色些。值得一读的一本小诗集。 序 海鸥之…

11.创建后台系统项目

后台系统项目 兼容性 vite官网&#xff1a;https://vitejs.dev/ vite中文网&#xff1a;https://cn.vitejs.dev/ vite需要node.js版本 >14.0.0&#xff0c;建议16 node -v 查看版本号 创建项目 进入存放目录 执行命令 npm create vitelatest 选择vue框架 选择typescript…

缓存穿透、缓存击穿、缓存雪崩及其解决方法

缓存穿透、缓存击穿、缓存雪崩是redis的三大问题。 在介绍这三大问题之前&#xff0c;我们需要先了解Redis作为一个缓存中间件&#xff0c;在项目中是如何工作的。首先看一下在没有缓存中间件的时候的系统数据访问的架构图&#xff1a; 客户端发起一个查询请求的时候&#xff…

一个软开关,长按开机,自动关机的实现。

连接说明&#xff1a; 1.ADP_PWR接适配器输入插座 当适配器插入的时候 ADP_PWR接入适配器7.4~8.4V电压 2.ON/OFF_KEY 接开关按键&#xff0c;当开关按下的时候&#xff0c;ON/OFF_KEY 接入电池电压 7.4V 3.ON/OFF_CTRL接单片机IO口 开机实现说明&#xff1a; 1.长按开…

存储随笔原创科普视频首播~

一周之前&#xff0c;存储随笔创建了B站账号。小编利用上个周末休息时间专门研究了B站视频录制的各种方案。发现并没有想象的很容易&#xff0c;先花了很长时间准备了一个PPT&#xff0c;再准备演讲大纲&#xff0c;最终磕磕绊绊完成了首期原创视频录制&#xff01; 可能不尽如…

Mybatis中显示插入数据成功,但在数据库中却没有显示插入的数据

1、在mybatis-config.xml中查看是否添加了JDBC&#xff0c;并引入了映射文件 2、在测试文件中&#xff0c;结尾是否添加提交事务&#xff1a;sqlSession.commit() 添加了这一步就能够将数据提交到数据库中&#xff0c;最后再关闭事务&#xff1a;sqlSession.close() * 如果运…

基于SpringBoot校园外卖服务系统设计与实现

点赞收藏关注 → 私信领取本源代码、数据库 一、项目概述 项目名称&#xff1a;基于SpringBoot校园外卖服务系统设计与实现 项目架构&#xff1a;B/S架构 开发语言&#xff1a;Java语言 主要技术&#xff1a;SpringBootMybatisMySQL 运行环境&#xff1a;Windows7以上、J…

Windows Server 2016 配置NTP客户端

目录 1. 前提条件1.1 进入服务管理界面1.2 开启Windows Time服务 2. 情况1&#xff1a;可以直接设置NTP时钟2.1 Internet时间设置 3. 情况2&#xff1a;有的版本服务器上没有“Internet时间”3.1 运行gpedit.msc 打开本地策略组3.2 Windows 时间服务3.3 配置Windows NTP客户端3…

Replidec:使用朴素贝叶斯分类器从宏基因组数据中识别病毒生命周期

Replidec - Use naive Bayes classifier to identify virus lifecycle from metagenomics data | bioRxivReplidec - Use naive Bayes classifier to identify virus lifecycle from metagenomics data | bioRxiv 安装 docker pull denglab/replidec 使用 for i in *_vOT…

draw.io 去除箭头

问题 draw.io 去除箭头 详细问题 笔者使用draw.io绘制流程图&#xff0c;需要没有箭头的连接器&#xff0c;但是General所提供的连接器添加了尾部箭头&#xff0c;如何取消尾部箭头? 解决方案 1、点击选中选择连接器&#xff08;箭头1&#xff09;。在格式面板的“Style…