代码链接:RIPGeo代码实现
├── preprocess.py # 预处理数据集并为模型运行执行IP聚类
├── main.py # 运行模型进行训练和测试
├── test.py #加载检查点,然后测试
一、导入各种模块和数据库
import torch.nn
from lib.utils import *
import argparse
import numpy as np
import random, os
from lib.model import *
# import wandb
import copy
整体功能是准备运行一个 PyTorch 深度学习模型的环境,具体的功能实现需要查看 lib.utils、lib.model 中的代码,以及整个文件的后续部分。
1、from lib.utils import *:从 lib.utils 模块中导入所有内容。
2、from lib.model import *:从 lib.model 模块中导入所有内容。
3、import copy:导入 copy 模块,用于复制对象,通常用于创建对象的深拷贝。
二、参数初始化(通过命令行参数)
parser = argparse.ArgumentParser()
# parameters of initializing
parser.add_argument('--seed', type=int, default=1024, help='manual seed')
parser.add_argument('--model_name', type=str, default='RIPGeo')
parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"],
help='which dataset to use')
这部分代码的目的是通过命令行参数设置一些初始化的参数,例如随机数种子、模型名称和数据集名称。这使得在运行脚本时可以通过命令行参数来指定这些参数的值。
1、parser = argparse.ArgumentParser():创建一个 argparse.ArgumentParser 对象,用于解析命令行参数。
2、parser.add_argument('--seed', type=int, default=1024, help='manual seed'):添加一个命令行参数,名称为 '--seed',表示随机数种子,类型为整数,默认值为 1024,help 参数是在命令行中输入 --help 时显示的帮助信息。
3、parser.add_argument('--model_name', type=str, default='RIPGeo'):添加一个命令行参数,名称为 '--model_name',表示模型的名称,类型为字符串,默认值为 'RIPGeo'。
4、parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"], help='which dataset to use'):添加一个命令行参数,名称为 '--dataset',表示数据集的名称,类型为字符串,默认值为 'New_York',choices 参数指定了可选的值为 ["Shanghai", "New_York", "Los_Angeles"],用户只能从这三个值中选择。
三、训练过程参数设置
# parameters of training
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--lr', type=float, default=2e-3)
parser.add_argument('--harved_epoch', type=int, default=5)
parser.add_argument('--early_stop_epoch', type=int, default=50)
parser.add_argument('--saved_epoch', type=int, default=100)
这部分代码的目的是设置一些训练过程中的超参数,例如优化器的动量参数、学习率、权重参数等。这些参数在训练过程中会影响模型的更新和收敛速度。
1、parser.add_argument('--beta1', type=float, default=0.9):添加一个命令行参数,名称为 '--beta1',表示 Adam 优化器的第一个动量(momentum)参数,类型为浮点数,默认值为 0.9。
2、parser.add_argument('--beta2', type=float, default=0.999):添加一个命令行参数,名称为 '--beta2',表示 Adam 优化器的第二个动量参数,类型为浮点数,默认值为 0.999。
3、parser.add_argument('--lr', type=float, default=2e-3):添加一个命令行参数,名称为 '--lr',表示学习率,类型为浮点数,默认值为 2e-3。
4、parser.add_argument('--harved_epoch', type=int, default=5):添加一个命令行参数,名称为 '--harved_epoch',表示当连续多少个epoch的性能没有增加时,学习率减半,类型为整数,默认值为 5。
5、parser.add_argument('--early_stop_epoch', type=int, default=50):添加一个命令行参数,名称为 '--early_stop_epoch',表示当连续多少个epoch的性能没有增加时,训练停止,类型为整数,默认值为 50。
6、parser.add_argument('--saved_epoch', type=int, default=100): 添加一个命令行参数,名称为 '--saved_epoch',表示为测试保存多少个checkpoint(epoch),类型为整数,默认值为 100。
四、模型参数设置
# parameters of model
parser.add_argument('--dim_in', type=int, default=30, choices=[51, 30], help="51 if Shanghai / 30 else")
parser.add_argument('--dim_med', type=int, default=32)
parser.add_argument('--dim_z', type=int, default=32)
parser.add_argument('--eta', type=float, default=0.1)
parser.add_argument('--zeta', type=float, default=0.1)
parser.add_argument('--step', type=int, default=2)
parser.add_argument('--mu', type=float, default=0.2)
parser.add_argument('--lambda_1', type=float, default=1)
parser.add_argument('--lambda_2', type=float, default=1)
parser.add_argument('--c_mlp', type=bool, default=True)
parser.add_argument('--epoch_threshold', type=int, default=50)
opt = parser.parse_args()
这部分用于定义模型的结构和训练过程中的一些重要参数。
1、parser.add_argument('--dim_in', type=int, default=30, choices=[51, 30], help="51 if Shanghai / 30 else"): 添加一个命令行参数,名称为 ''--dim_in',表示输入数据的维度,类型为整数,默认值为 30,可选的有[51,30],如果是上海数据集,维度为51,否则为30。
2、parser.add_argument('--dim_med', type=int, default=32): 添加一个命令行参数,名称为 '--dim_med',表示中间层的维度,类型为整数,默认值为 32。
3、parser.add_argument('--dim_z', type=int, default=32): 添加一个命令行参数,名称为 '--dim_z',表示向量表示的维度,类型为整数,默认值为 32。
4、parser.add_argument('--eta', type=float, default=0.1): 添加一个命令行参数,名称为 '--eta',表示数据扰动程度,默认值为 0.1。
5、parser.add_argument('--zeta', type=float, default=0.1): 添加一个命令行参数,名称为 '--zeta',表示参数扰动程度,默认值为 0.1。
6、parser.add_argument('--step', type=int, default=2): 添加一个命令行参数,名称为 '--step',表示单参数扰动下梯度上升次数,类型为整数,默认值为 2。
7、parser.add_argument('--mu', type=float, default=0.2): 添加一个命令行参数,名称为 '--mu',表示参数扰动的内学习率,默认值为 0.2。
8、parser.add_argument('--lambda_1', type=float, default=1): 添加一个命令行参数,名称为 '--lambda_1',表示损失函数中数据扰动的权衡系数,默认值为 1。
9、parser.add_argument('--lambda_2', type=float, default=1): 添加一个命令行参数,名称为 '--lambda_2',表示损失函数中参数扰动的权衡系数,默认值为 1。
10、parser.add_argument('--c_mlp', type=bool, default=True): 添加一个命令行参数,名称为 '--c_mlp',表示在预测是否使用collaborative_mlp时,默认值为 True。
11、parser.add_argument('--epoch_threshold', type=int, default=50): 添加一个命令行参数,名称为 '--epoch_threshold',表示当我们开始在数据和参数中添加扰动时,类型为整数,默认值为 50。
12、opt = parser.parse_args(): 将命令行参数解析成Python对象。简单来说,就是通过parser解析命令行传入的参数,并将其赋值给变量pt。
五、设置随机种子数
if opt.seed:
print("Random Seed: ", opt.seed)
random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.set_printoptions(threshold=float('inf'))
这一部分的目的是确保在使用随机数的场景中,每次运行程序得到的随机结果是可复现的。通过设置相同的随机数种子,可以使得每次运行得到相同的随机数序列。
1、如果 opt 对象中的 seed 属性存在(不为 0 或 False 等假值),则执行以下操作:
- 打印随机数种子的信息。
- 使用 random 模块设置 Python 内建的随机数生成器的种子。
- 使用 PyTorch 的 torch 模块设置随机数种子。
2、torch.set_printoptions(threshold=float('inf')):设置 PyTorch 的打印选项,将打印的元素数量限制设置为无穷大,即不限制打印的元素数量。这样可以确保在打印张量时,所有元素都会被打印出来,而不会被省略。
六、过滤所有警告信息
warnings.filterwarnings('ignore')
过滤掉所有警告信息,将警告信息忽略。这通常用于在代码中避免显示一些不影响程序执行的警告信息,以保持输出的清晰。在某些情况下,警告信息可能是有用的,但如果明确知道这些警告对程序执行没有影响,可以选择忽略它们。
七、动态选择运行环境
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print("device:", device)
print("Dataset: ", opt.dataset)
cuda = True if torch.cuda.is_available() else False
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
这部分代码的目的是根据硬件环境动态选择运行模型的设备,并选择相应的 PyTorch 张量类型。如果有可用的 GPU,就使用 GPU 运行模型和 GPU 张量类型;否则,使用 CPU 运行模型和 CPU 张量类型。
1、device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu'):创建一个 PyTorch 设备对象,表示运行模型的设备。如果 CUDA 可用(即有可用的 GPU),则使用 'cuda:0' 表示第一个 GPU,否则使用 'cpu' 表示 CPU。
2、print("device:", device):打印设备的信息,即使用的是 GPU 还是 CPU。
3、cuda = True if torch.cuda.is_available() else False:根据 CUDA 是否可用设置一个布尔值,表示是否使用 GPU。如果 CUDA 可用,则 cuda 为 True,否则为 False。
4、Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor:根据上一步得到的 cuda 布尔值选择使用 GPU 还是 CPU 上的 PyTorch 张量类型。如果 cuda 为 True,则 Tensor 被设置为 torch.cuda.FloatTensor,表示在 GPU 上的浮点数张量类型,否则设置为 torch.FloatTensor,表示在 CPU 上的浮点数张量类型。
八、加载数据(训练测试)
'''load data'''
train_data = np.load("./datasets/{}/Clustering_s1234_lm70_train.npz".format(opt.dataset),
allow_pickle=True)
test_data = np.load("./datasets/{}/Clustering_s1234_lm70_test.npz".format(opt.dataset),
allow_pickle=True)
train_data, test_data = train_data["data"], test_data["data"]
print("data loaded.")
这部分代码的目的是加载训练集和测试集的数据,数据文件的路径根据 opt.dataset 的值确定(见四、模型参数设置)。
train_data = np.load("./datasets/{}/Clustering_s1234_lm70_train.npz".format(opt.dataset), allow_pickle=True):使用 NumPy 的 load 函数加载训练数据。数据集的路径根据opt.dataset
的取值而动态确定。allo