循环冗余校验CRC和FPGA实现

news2024/11/16 7:27:25

一、概念

        CRC校验,中文翻译过来是:循环冗余校验,英文全称是:Cyclic Redundancy Check。是一种通过对数据产生固定位数的校验码,以检验数据是否存在错误的技术。

        其主要特点是检错能力强、开销小,易于电路实现。像网络通信上,就使用了CRC32进行数据校验。

1.1 CRC的数学基础

        其数学基础是,使用除法求余数。

        1、将K位的信息码写成如下多项式形式:\sum_{n=0}^{K-1}a_{n}x^{n}

        2、将信息码左移R位,变成如下多项式形式:\sum_{n=0}^{K-1}a_{n}x^{n+R}

        3、将移位后的信息码,除以指定的生成多项式,最后得到的余数即为CRC校验值。

        转换成二进制信息表述如下:

        1、K位的信息码,右移R位,得到新的K+R位的信息码,

        2、将新的K+R位的信息码,除以指定的二进制数,得到的余数即为CRC校验值。

        当然,此处采用的是模2运算,即没有借位。实质上在运行加减法的时候,采用的是异或运算。

1.2 其他重要概念

        CRC 校验的核心是模2除法运算,但是还存在一些其他的规则,描述如下:

        初始值:给CRC一个计算初始值,可以是0,也可以为其他值,会将待计算的信息码的值与初始值进行异或。(网上大部分关于CRC的校验计算,初始值都是默认取0,但是实际应用中,比如CRC32,其初始值是0xFFFFFFFF)

        结果异或值:将计算结果与结果异或值进行异或运算后输出,目的是防止全0数据的CRC一直为0,

        数据反转:CRC中数据 反转,指的是一个字节的数据中,高bit变低bit,低bit变高bit。 比如0x55,经过数据反转后,变为0xAA。

        生成多项式:模2除法中的除数,根据多项式可以生成二进制除数,不同的CRC校验有不同的多项式。

1.3 CRC校验的标准流程

        1、初始值赋值给crc_reg;

        2、判断信息码是否需要反转,若需要则进行数据反转,不需要则保持不变,结果赋值给crc_reg;

        3、信息码(或者反转后的信息码)左移R位,即信息码后面补上R个二进制的0;(R为校验码的位宽,同时也是生成多项式的最高次幂)

        4、crc_reg与补0后的信息码(高位)进行异或运算,并赋值给crc_reg;

        5、crc_reg与信息码进行模2除法运算,运算的余数结果赋值给crc_reg;

        6、判断输出结果是否需要反转,若需要则进行数据反转,不需要则保持不变,结果赋值给crc_reg;

        7、crc_reg与结果异或值进行异或运算,得到最终的校验值。

二、CRC32

2.1 CRC32相关信息

        最近在考虑使用FPGA实现UDP协议,就研究到了CRC32校验,像赛灵思提供的MAC核内部就实现了CRC32校验方式。于是我就抱着学习的态度,研究了一下CRC32。关于CRC8、CRC16等等其余的CRC校验方式,此处就不赘述了。

        CRC32校验里面提到了几个概念:

1、生成多项式(generator polynomial)

        CRC32=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+1。

        二进制可以表示为33'b1_0000_0100_1100_0001_0001_1101_1011_0111。

        十六进制表示为32‘h104C11DB7。

        生成多项式,即为除数。

2、待校验的数据

        待校验的数据即为被除数,即上面描述的信息码。

        最终获得的结果,即为CRC校验值。

2.2 CRC32校验流程

具体的操作流程:

  1、初始值赋值给crc_reg;

 2、判断信息码是否需要反转,若需要则进行数据反转,不需要则保持不变,结果赋值给crc_reg;

3、信息码(或者反转后的信息码)左移32位,即信息码后面补上32个二进制的0;

4、crc_reg与补0后的信息码(高32位)进行异或运算,并赋值给crc_reg;

 5、crc_reg与信息码进行模2除法运算,运算的余数结果赋值给crc_reg;

 6、判断输出结果是否需要反转,若需要则进行数据反转,不需要则保持不变,结果赋值给crc_reg;

7、crc_reg与结果异或值进行异或运算,得到最终的校验值。

        按照C语言编写了此CRC32校验流程,在VScode中进行测试。设置不同的反转信息、初始值、结果异或值,输出结果与CRC计算工具相一致。

CRC计算器工具:

CRC(循环冗余校验)在线计算_ip33.comicon-default.png?t=N7T8http://www.ip33.com/crc.html

//8位数据反转
uint8_t invertuint8(uint8_t data) 
{
    uint8_t tmp;
    tmp = 0;

    for(int i = 0; i<8;i++){
        if(data & (1<<i) ){
            tmp |= 1<< (7-i);
        }
    }

    return tmp;
}

//32位数据反转
uint32_t invertuint32(uint32_t data)
{
    uint32_t tmp;
    tmp = 0;

    for(int i = 0; i<32;i++){
        if(data &(1<<i) ){
            tmp |= 1<< (31-i);
        }
    }

    return tmp;
}


uint32_t CRC32(uint8_t& data)
{
    uint8_t in_reverse_en = 1; //输入数据是否反转
    uint8_t out_reverse_en = 1;//输出数据是否反转



    uint32_t poly = 0x04C11DB7; //生成多项式0x1_04C11DB7 ,仅取低32位,最高为1通过左移直接处理
    uint32_t init_value = 0xFFFFFFFF;//初始值
    uint32_t out_xor_value = 0xFFFFFFFF;//结果异或值

    uint32_t crc_reg;
    uint32_t data_reg;
    uint32_t data_shift;

//第一步,赋初值
    crc_reg = init_value;
//第二步,输入是否反转
    if(in_reverse_en == 1)
        data_reg = invertuint8(data);
    else    
        data_reg = data;
    printf("data:%x\n",data);
    printf("data_reg:%x\n",data_reg);

//第三步,信息码左移32位,赋值。由于字宽限制,仅左移24位,实际上8次移位异或运算后,其余数与原有运算相一致。
    data_shift = (data_reg <<24);
//第四步,初始值与数据异或操作
    crc_reg = crc_reg ^ data_shift;
//第五步,模2除法
    for(int i=0;i<8;i++){
        if(crc_reg & 0x80000000)//最高位是1时
            crc_reg = (crc_reg << 1) ^ poly; //左移将生成多项式的第32bits处理掉,相当于异或
        else
            crc_reg = crc_reg << 1;
    }
//
//第六步,输出是否反转

    if(out_reverse_en == 1)
        crc_reg = invertuint32(crc_reg);
//第七步,与结果异或值进行异或运算

    crc_reg = crc_reg^out_xor_value;


    return crc_reg;
}


int main(int argc, char *argv[])
{

    uint8_t data = 0x55;
    uint32_t CRC_result;


    CRC_result = CRC32(data);

    printf("CRC_result:%x\n",CRC_result);

    getchar();

    return 0;
}

       

三、CRC32的FPGA实现

         原理已经清楚了,按照上述流程就可以实现CRC32。但是FPGA有更简易的实现形式。就属于找规律的范畴了。对于CRC32,上一个校验值(或者初始值)进行CRC校验的时候,CRC校验的单个bits的校验结果固定与上一个校验值的某几个bits有关。

        所以可以直接采用bit运算的方式输出CRC校验结果。具体找规律这里不再分析,直接上示例代码(正点原子的代码)。也有现成的CRC FPGA代码生成工具,可以直接调用。

CRC代码生成工具一:Easics CRC Toolicon-default.png?t=N7T8http://crctool.easics.be/

CRC代码生成工具二:OutputLogic.com » CRC Generatoricon-default.png?t=N7T8http://outputlogic.com/?page_id=321

 

module crc32_d8(
    input                 clk     ,  //时钟信号
    input                 rst_n   ,  //复位信号,低电平有效
    input         [7:0]   data    ,  //输入待校验8位数据
    input                 crc_en  ,  //crc使能,开始校验标志
    input                 crc_clr ,  //crc数据复位信号            
    output   reg  [31:0]  crc_data,  //CRC校验数据
    output        [31:0]  crc_next   //CRC下次校验完成数据
    );

//*****************************************************
//**                    main code
//*****************************************************

//输入待校验8位数据,需要先将高低位互换
wire    [7:0]  data_t;

assign data_t = {data[0],data[1],data[2],data[3],data[4],data[5],data[6],data[7]};

//CRC32的生成多项式为:G(x)= x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 
//+ x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1

assign crc_next[0] = crc_data[24] ^ crc_data[30] ^ data_t[0] ^ data_t[6];
assign crc_next[1] = crc_data[24] ^ crc_data[25] ^ crc_data[30] ^ crc_data[31] 
                     ^ data_t[0] ^ data_t[1] ^ data_t[6] ^ data_t[7];
assign crc_next[2] = crc_data[24] ^ crc_data[25] ^ crc_data[26] ^ crc_data[30] 
                     ^ crc_data[31] ^ data_t[0] ^ data_t[1] ^ data_t[2] ^ data_t[6] 
                     ^ data_t[7];
assign crc_next[3] = crc_data[25] ^ crc_data[26] ^ crc_data[27] ^ crc_data[31] 
                     ^ data_t[1] ^ data_t[2] ^ data_t[3] ^ data_t[7];
assign crc_next[4] = crc_data[24] ^ crc_data[26] ^ crc_data[27] ^ crc_data[28] 
                     ^ crc_data[30] ^ data_t[0] ^ data_t[2] ^ data_t[3] ^ data_t[4] 
                     ^ data_t[6];
assign crc_next[5] = crc_data[24] ^ crc_data[25] ^ crc_data[27] ^ crc_data[28] 
                     ^ crc_data[29] ^ crc_data[30] ^ crc_data[31] ^ data_t[0] 
                     ^ data_t[1] ^ data_t[3] ^ data_t[4] ^ data_t[5] ^ data_t[6] 
                     ^ data_t[7];
assign crc_next[6] = crc_data[25] ^ crc_data[26] ^ crc_data[28] ^ crc_data[29] 
                     ^ crc_data[30] ^ crc_data[31] ^ data_t[1] ^ data_t[2] ^ data_t[4] 
                     ^ data_t[5] ^ data_t[6] ^ data_t[7];
assign crc_next[7] = crc_data[24] ^ crc_data[26] ^ crc_data[27] ^ crc_data[29] 
                     ^ crc_data[31] ^ data_t[0] ^ data_t[2] ^ data_t[3] ^ data_t[5] 
                     ^ data_t[7];
assign crc_next[8] = crc_data[0] ^ crc_data[24] ^ crc_data[25] ^ crc_data[27] 
                     ^ crc_data[28] ^ data_t[0] ^ data_t[1] ^ data_t[3] ^ data_t[4];
assign crc_next[9] = crc_data[1] ^ crc_data[25] ^ crc_data[26] ^ crc_data[28] 
                     ^ crc_data[29] ^ data_t[1] ^ data_t[2] ^ data_t[4] ^ data_t[5];
assign crc_next[10] = crc_data[2] ^ crc_data[24] ^ crc_data[26] ^ crc_data[27] 
                     ^ crc_data[29] ^ data_t[0] ^ data_t[2] ^ data_t[3] ^ data_t[5];
assign crc_next[11] = crc_data[3] ^ crc_data[24] ^ crc_data[25] ^ crc_data[27] 
                     ^ crc_data[28] ^ data_t[0] ^ data_t[1] ^ data_t[3] ^ data_t[4];
assign crc_next[12] = crc_data[4] ^ crc_data[24] ^ crc_data[25] ^ crc_data[26] 
                     ^ crc_data[28] ^ crc_data[29] ^ crc_data[30] ^ data_t[0] 
                     ^ data_t[1] ^ data_t[2] ^ data_t[4] ^ data_t[5] ^ data_t[6];
assign crc_next[13] = crc_data[5] ^ crc_data[25] ^ crc_data[26] ^ crc_data[27] 
                     ^ crc_data[29] ^ crc_data[30] ^ crc_data[31] ^ data_t[1] 
                     ^ data_t[2] ^ data_t[3] ^ data_t[5] ^ data_t[6] ^ data_t[7];
assign crc_next[14] = crc_data[6] ^ crc_data[26] ^ crc_data[27] ^ crc_data[28] 
                     ^ crc_data[30] ^ crc_data[31] ^ data_t[2] ^ data_t[3] ^ data_t[4]
                     ^ data_t[6] ^ data_t[7];
assign crc_next[15] =  crc_data[7] ^ crc_data[27] ^ crc_data[28] ^ crc_data[29]
                     ^ crc_data[31] ^ data_t[3] ^ data_t[4] ^ data_t[5] ^ data_t[7];
assign crc_next[16] = crc_data[8] ^ crc_data[24] ^ crc_data[28] ^ crc_data[29] 
                     ^ data_t[0] ^ data_t[4] ^ data_t[5];
assign crc_next[17] = crc_data[9] ^ crc_data[25] ^ crc_data[29] ^ crc_data[30] 
                     ^ data_t[1] ^ data_t[5] ^ data_t[6];
assign crc_next[18] = crc_data[10] ^ crc_data[26] ^ crc_data[30] ^ crc_data[31] 
                     ^ data_t[2] ^ data_t[6] ^ data_t[7];
assign crc_next[19] = crc_data[11] ^ crc_data[27] ^ crc_data[31] ^ data_t[3] ^ data_t[7];
assign crc_next[20] = crc_data[12] ^ crc_data[28] ^ data_t[4];
assign crc_next[21] = crc_data[13] ^ crc_data[29] ^ data_t[5];
assign crc_next[22] = crc_data[14] ^ crc_data[24] ^ data_t[0];
assign crc_next[23] = crc_data[15] ^ crc_data[24] ^ crc_data[25] ^ crc_data[30] 
                      ^ data_t[0] ^ data_t[1] ^ data_t[6];
assign crc_next[24] = crc_data[16] ^ crc_data[25] ^ crc_data[26] ^ crc_data[31] 
                      ^ data_t[1] ^ data_t[2] ^ data_t[7];
assign crc_next[25] = crc_data[17] ^ crc_data[26] ^ crc_data[27] ^ data_t[2] ^ data_t[3];
assign crc_next[26] = crc_data[18] ^ crc_data[24] ^ crc_data[27] ^ crc_data[28] 
                      ^ crc_data[30] ^ data_t[0] ^ data_t[3] ^ data_t[4] ^ data_t[6];
assign crc_next[27] = crc_data[19] ^ crc_data[25] ^ crc_data[28] ^ crc_data[29] 
                      ^ crc_data[31] ^ data_t[1] ^ data_t[4] ^ data_t[5] ^ data_t[7];
assign crc_next[28] = crc_data[20] ^ crc_data[26] ^ crc_data[29] ^ crc_data[30] 
                      ^ data_t[2] ^ data_t[5] ^ data_t[6];
assign crc_next[29] = crc_data[21] ^ crc_data[27] ^ crc_data[30] ^ crc_data[31] 
                      ^ data_t[3] ^ data_t[6] ^ data_t[7];
assign crc_next[30] = crc_data[22] ^ crc_data[28] ^ crc_data[31] ^ data_t[4] ^ data_t[7];
assign crc_next[31] = crc_data[23] ^ crc_data[29] ^ data_t[5];

always @(posedge clk or negedge rst_n) begin
    if(!rst_n)
        crc_data <= 32'hff_ff_ff_ff;
    else if(crc_clr)                             //CRC校验值复位
        crc_data <= 32'hff_ff_ff_ff;
    else if(crc_en)
        crc_data <= crc_next;
	else;
end

endmodule

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1538792.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

设计模式 --4:工厂方法模式

总结 &#xff1a; 个人理解&#xff1a; 工厂方法模式就是在简单工程模式的基础下将工厂类抽象出来。如果不抽象工厂类 &#xff0c;每一次创建一个新的算法&#xff0c;都要修改原来的工厂类&#xff0c;这不符合 开放–封闭原则 将工厂类给抽象出来&#xff0c;让具体的算法…

Node安装,nodejs详细安装步骤

什么是nodejs? 脚本语言需要一个解析器才能运行&#xff0c;JavaScript是脚本语言&#xff0c;在不同的位置有不一样的解析器&#xff0c;如写入html的js语言&#xff0c;浏览器是它的解析器角色。而对于需要独立运行的JS&#xff0c;nodejs就是一个解析器。 每一种解析器都是…

Springboot解决跨域问题方案总结(包括Nginx,Gateway网关等)

&#x1f3f7;️个人主页&#xff1a;牵着猫散步的鼠鼠 &#x1f3f7;️系列专栏&#xff1a;Java全栈-专栏 &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正 目录 前言 解决跨域问题方案 1.Spring Boot 中解决跨域 1.1 通过注解跨域 1.2 通…

行业名称组合商标驳回,要不要做驳回复审!

今天一网友问普推知产老杨做驳回复审多少费用&#xff0c;让先发来驳回文件看下&#xff0c;并不是所有商标驳回值得去做驳回复审&#xff0c;因为有的驳回理由去做通过率极低&#xff0c;等于浪费费用和时间。 网友这个申请注册商标名称是英文&#xff0c;翻译过来的是行业常…

全国大学生数学建模大赛备赛——相关系数的求解(皮尔逊(pearson)、斯皮尔曼(spearman)、肯德尔(kendall)相关系数)

相关系数是用来衡量两个变量之间线性相关程度的指标。它的取值范围在-1到1之间&#xff0c;当相关系数为1时表示两个变量完全正相关&#xff08;即一个变大另一个也变大&#xff09;&#xff0c;当相关系数为-1时表示两个变量完全负相关&#xff08;即一个变大另一个变小&#…

设计数据库之概念模式:E-R模型

Chapter3&#xff1a;设计数据库之概念模式&#xff1a;E-R模型 笔记来源&#xff1a;《漫画数据库》—科学出版社 设计数据库的步骤&#xff1a; 概念模式 概念模式(conceptual schema)是指将现实世界模型化的阶段进而&#xff0c;是确定数据库理论结构的阶段。 概念模式的设…

PMSM 永磁同步电机滑膜控制 SVPWM矢量控制 matlab simulink 仿真

仿真搭建平台&#xff1a; (1)该模型采用matlab/simulink 2016b版本搭建&#xff0c;使用matlab 2016b及以上版本打开最佳; (2)该模型已经提前转换了各个常用版本&#xff08;最低为matlab2012b&#xff09;&#xff0c;防止出现提示版本过高的情况。 模型截图&#xff1a; 算…

基于springboot+vue的反欺诈平台的建设

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

律师如何看待项目管理中的技术风险

大家好&#xff0c;我是不会魔法的兔子&#xff0c;是一枚北京的执业律师&#xff0c;创建[项目管理者的法小院儿]&#xff0c;持续从法律的角度分享项目管理中的风险问题及预防&#xff0c;让项目管理者能够提早发现与解决项目执行过程中的风险&#xff0c;同时欢迎大家一起交…

Vue3 + Django 前后端分离项目实现密码认证登录

1、功能需求 通常中小型前后端项目&#xff0c;对安全要求不高&#xff0c;也可以采用密码认证方案。如果只用django来实现非常简单。采用 Vue3 前后端分离架构&#xff0c;实现起来稍繁琐一点&#xff0c;好处是可以利用各种前端技术栈&#xff0c;如element-plus UI库来渲染…

蓝桥杯 2022 省B 李白打酒加强版

这题用递归暴力的方法如下&#xff1a; #include<iostream> #include<bits/stdc.h> using namespace std; int num; int N,M; void dfs(int now,int n,int m) {if(now<0 || n>N ||m>M)return ;if(nN && mM){if(now1)num1;return;}dfs(now-1,n,m1…

DDR4总结最全纯干货分享

DDR存储器发展的主要方向一言以蔽之&#xff0c;是更高速率&#xff0c;更低电压&#xff0c;更密的存储密度&#xff0c;从而实现更好的性能。 DDR4 SDRAM&#xff08;Double Data Rate Fourth SDRAM&#xff09;&#xff1a;DDR4提供比DDR3/ DDR2更低的供电电压1.2V以及更高的…

如果搭建axb回拨

AXB回拨技术是一种先进的电话通讯技术&#xff0c;它通过在A&#xff08;主叫方&#xff09;与B&#xff08;被叫方&#xff09;之间引入一个中间号码X&#xff0c;实现了双方的通话连接。这种技术可以有效避免直接拨打被叫方的电话号码&#xff0c;从而保护了用户的隐私。 具体…

GPT2从放弃到入门(三)

引言 上篇文章我们看到了如何从零训练一个聊天机器人&#xff0c;本文在此基础上介绍各种生成策略的原理和实现。最后通过Gradio构建一个聊天机器人应用。 定义生成框架 def generate(model,tokenizer,prompt,max_length255,temperature1.0,top_k50,top_p1.0,repetition_pen…

【WEEK4】 【DAY4】AJAX第一部分【中文版】

【WEEK4】 【DAY4】AJAX第一部分【中文版】 2024.3.21 Thursday 目录 8.AJAX8.1.简介8.2.伪造ajax8.2.1.新建module&#xff1a;springmvc-06-ajax8.2.2.添加web支持&#xff0c;导入pom依赖8.2.2.1.修改web.xml8.2.2.2.新建jsp文件夹 8.2.3.新建applicationContext.xml8.2.4.…

tftp使用

下载 sudo apt-get install tftpd-hpa 创建文件夹 mkdir /home/ljl/work/tftpd mkdir /home/ljl/tftpd chmod 777 tftpd/编辑 sudo vim /etc/default/tftpd-hpa //服务器端 sudo apt-get install tftp-hpa //客户端编辑权限 sudo vi /etc/default/tftpd-hpa 内容&#xff1…

智能风扇的新篇章:唯创知音WTK6900G语音识别芯片引领行业革新

随着科技浪潮的推进&#xff0c;智能化技术逐渐渗透到生活的每一个角落&#xff0c;家电领域尤为明显。风扇&#xff0c;这一夏日清凉神器&#xff0c;也通过智能化改造&#xff0c;焕发出前所未有的光彩。其中&#xff0c;智能语音控制功能的加入&#xff0c;为风扇的使用带来…

算法系列--递归(2)

&#x1f495;"什么样的灵魂就要什么样的养料&#xff0c;越悲怆的时候我越想嬉皮。"&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;算法系列–递归(2) 前言:今天带来的是算法系列--递归(2)的讲解,包含六个和二叉树相关的题目哦 1.计算布尔⼆叉树的…

Redis中文乱码问题

最近排查问题&#xff0c;发现之前的开发将日志写在redis缓存中&#xff08;不建议这样做&#xff09;&#xff0c;我在查看日志的时候发现没办法阅读&#xff0c;详细是这样的&#xff1a; 查阅资料后发现是进制问题&#xff0c;解决方法是启动客户端的时候将redis-cli改为red…

【RPG Maker MV 仿新仙剑 战斗场景UI (八)】

RPG Maker MV 仿新仙剑 战斗场景UI 八 状态及装备场景代码效果 状态及装备场景 本计划在战斗场景中直接制作的&#xff0c;但考虑到在战斗场景中加入太多的窗口这不太合适&#xff0c;操作也繁琐&#xff0c;因此直接使用其他场景。 代码 Pal_Window_EquipStatus.prototype.…