Kafka 3.x(上)

news2024/11/17 16:02:59

具体课程请看课程简介_哔哩哔哩_bilibili

概念

  • 分布式流处理平台,它以高吞吐量和可扩展性而闻名。相同类型的消息存在于Topic主题中,主题类似于数据库中的表,不过主题存储的数据大多是半结构化的。
  • 主题可以包含多个分区(分布式的消息系统),不同的分区存储在不同的服务器上,并且存在三副本(分区Partition)备份原则,而且是与硬盘直接打交道的(replication-factor=3)。

  • 分区是线性增长的、不可变的提交日志,当消息存储在分区Partition之后,消息就不可变更。
  • Kafka会为每个消息赋一个偏移量offset,记录每条消息的位置。可以借助于offset对消息进行提取,但是没有办法对消息的内容进行检索和查询。
    • 由于 Kafka 为每条消息赋予了偏移量,消费者可以利用偏移量来提取特定位置的消息。例如,消费者可以指定从分区的某个偏移量开始读取消息。(多数情况为:从上次停留的地方继续读取新消息,重启或者回溯到旧的偏移量,而不会丢失消息或重复处理消息。)
    • 这意味着,如果你想找到包含特定内容或符合某些条件的消息,你不能直接通过 Kafka 的 API 来实现。Kafka 的设计主要是围绕高效地以顺序方式存储和读取大量消息,而不是为消息内容建立索引或支持复杂的查询。


消息Record 以键值对的形式进行存储:

如果key不指定则默认为空#,此时生产者会以轮询的方式把消息写到不同的队列中。

有key的话生产者借助于分区器来分区,key同分区同。
  • 三分区备份,主分区为leader,其他两个为follower,向leader写入数据、从其中读取数据。
  • follower只负责从leader中复制数据、保持数据一致。Kafka会监控其同步状态。
  • ISR,就是正常同步中的副本集。如果某个follower掉队则会暂时将其编号从ISR中剔除,直到追上之后再重新加入。


生产者(Producers)

生产者 是向 Kafka 主题发送消息的客户端应用程序或系统。生产者负责创建消息,并将其发布到指定的 Kafka 主题。生产者可以通过指定消息的键(Key)来控制消息被发送到主题的哪个分区。

消费者(Consumers)

消费者 是从 Kafka 主题读取消息的客户端应用程序或系统。消费者可以订阅一个或多个主题,并从中读取消息数据进行处理。Kafka 还支持消费者组的概念,允许多个消费者作为一个组协同处理主题中的消息,实现消息的负载均衡和容错。

Kafka为生产者和消费者之间的消息传递提供服务。生产者和消费者都位于 Kafka 集群的外部,它们通过 Kafka 提供的客户端库与 Kafka 集群进行通信,实现消息的生产和消费。


Kafka 消息通道

消息通道作用:Kafka 集群充当生产者和消费者之间的消息通道,提供了高效、可靠的消息传递机制。Kafka 的设计目标是能够处理高速流动的数据,并支持数据的持久化存储,以便消费者可以根据需要读取数据,即使是在生产者发送消息后的很长一段时间。

  • Kafka集群是由多个Broker消息代理组成的Kafka Cluster。
  • Broker负责消息的读写请求并将消息写入磁盘中,通常在每个服务器中都启动一个Broker的实例。(这个面试的时候可以说一下啊)

例子:八个Broker服务器,共有八种分区,每个分区都有三个备份。

  • 以左上角为例,p1分区是leader,所以p1的所有读写请求和磁盘请求,都是由p1所在的服务器(Broker)处理。
  • 对于p0和p2只是follower,所以Broker会找到他们的leader并且处理同步工作。


Kafka消息模型

最后一句话少了个“组”。首先记忆消费者和分区是多对多的关系,然后只要多记住一个限制:同一个组的消费者不能同时消费一个分区(出于性能和开销的考虑,会额外引入这样的机制)。


发布订阅模式:每一个消息都会被每个消费者所消费。

  • 措施:所有Consumer自成一组。

P2P:每个消息只用被消费一次即可。

  • 措施:所有Consumer放在一个组,就不可能存在同一个组内的消费者多次消费某一个消息。
  • 同时P2P利于负载均衡:便于动态扩展组的大小,扩展完后可以方便地均衡消费组内部的消费;或者减弱某消费者突然宕机产生的问题。


总而言之,无论是生产得到的offset消息顺序还是消费顺序,分区内部的消息是按顺序的,分区之间不存在任何的顺序相关性。


如果要保证消息的顺序应该怎么办?


消息传递语义(和Flink一样)

生产者将消息发送给Broker之后,Broker会发送ACK。在 Kafka 中,确保消息传递语义(至少一次、至多一次、正好一次)主要是通过消费者如何提交偏移量以及生产者如何发送消息(包括消息的确认机制)来实现的。

  • 如果消费者在处理消息之前就提交偏移量至_consumer_offsets(一种特殊的Topic,存放每个Consumer的消费位置),然后消费消息,则属于最多一次(自动提交【下文会讲】可能会导致这种情况)。如果在处理消息之后发生故障,那些消息可能不会被重新消费。

  • 消费者在处理消息之后提交偏移量(通过手动提交实现)。这样,即使发生故障,消费者也可以从最后一个已知的提交偏移量重新开始,确保所有消息至少被处理一次。

  • 至多一次和至少一次的实现并不是通过“生产者确定提交偏移量位置”来实现的,而是依赖于消费者如何管理自己的偏移量提交策略。

精确一次:需要更复杂的机制,比如 Kafka 的事务(Transactions)支持,确保生产和消费过程中的消息不会丢失也不会被重复处理。


生产者API

生产者通过send发送消息:

生产者(客户端程序或系统)创建缓冲区,缓冲区会为每个分区创建一个缓冲以存放消息,大小为batch.size。生产者首先将消息放入对应分区的缓冲中,不管消息是否会成功发送到服务端Broker,转头继续消息的处理。(但是会随着acks的1/-1设置而异步接收ACK) 消息发送给Broker由后台IO线程负责。这样的异步模型有利于提高生产效率(可以类比于等待收货人签字和直接放入菜鸟驿站)。

在生产者和服务端通信之前会有一段connection建立联系的过程,生产者会同时不断地将消息放入到生产者的缓冲区中。等到connection建立完成,才由后台IO线程处理缓冲消息放在Broker中。


同步发送

  • send方法会返回一段Future类型的结果,进一步通过它的get()方法对消息进行阻塞,等这一条消息发送之后才会进行下一条消息的发送。

批量发送

在请求非常频繁或者数据量非常大的情况下,可以通过设置linger.ms(延迟时间,单位ms。每几ms就发送一批消息。)和Batch.size(每一批消息的最大大小,只要数据量一到达这个大小,就会自动打包成批发送,忽略linger.ms的设置,及其霸道)这两个参数进行批量发送。

  • 当消息设置了任何一个以上的两个参数,就会进行批量发送。可以理解为这两个参数的设置就是Kafka生产者批量发送的大门,开一个就ok。

生产者配置说明

  • acks:Broker消息向生产者确认的ACK。(acks并不是配置ACK消息,而是配置ACK这个消息响应的机制)
    • 0:生产者不会等待服务器端的任何请求,一旦消息进入缓冲,我们就认为它发送成功了,有可能会导致数据的丢失。这种模式的延迟最低,但数据丢失的风险也最高。
    • 1:服务器端的leader已经将消息存储在本地,但是不管配套的follower是否同步完成,立马通知生产者消息发送成功。
      • 默认值
      • 这提供了一个中等级别的数据可靠性,可能会产生数据丢失:leader虽然收到了,但是还没来得及同步到follower就宕机了。
    • -1/all:follower已经将leader存储的消息同步到磁盘中了,再发送成功ACK,这保证了消息数据不会丢失。
      • 通常设置为all而不是默认值1
      • 这提供了最高级别的数据可靠性保证,但相对来说,延迟也最高,因为它需要等待所有参与复制的副本都确认消息。
  • retries:重试的次数,常见于消息发送失败后的重试。
    • 默认0次
    • 和acks配合使用就可以形成不同的消息传递语义:

  • 至多一次:Acks=0/1,不能保证消息的存在,可能会丢失数据,同时易知此时retries=0默认值。即使数据传输失败(没到缓冲或者leader没来的及存储到本地)也不会进行额外重复的发送。
  • 至少一次:Acks=-1保证了消息一定不会丢失。同时retires>0,当消息发送失败了我们会对消息进行重复的发送。

补充:生产者的异步发送与确认接收

  • 即使是在 acks=1 或 acks=all 的设置下,生产者的消息发送操作仍然是异步的。生产者将消息放入对应分区的本地缓冲区,然后由后台的 I/O 线程负责将消息批量发送到 Kafka 服务器(Broker)。这种异步发送机制有利于提高生产者的吞吐量和效率。
  • 当设置 acks=1 或 acks=all 时,尽管发送操作是异步的,生产者仍然需要等待来自服务器的确认响应(ACK)。这意味着生产者在继续处理新消息之前,会在内部等待特定消息的发送确认。这种等待是异步发生的,对生产者的主线程来说是非阻塞的,生产者可以继续将新消息放入本地缓冲区。(不耽误手上新数据的活,一边干活一边等待消息,异步)
  • Kafka 生产者 API 提供了回调机制,允许开发者在消息被确认或发送失败时获取通知,从而可以处理发送成功或重试失败的消息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1537990.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flink:维表 Join 难点和技术方案汇总

博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,…

Vue模块化开发步骤—遇到的问题—解决办法

目录 1.npm install webpack -g 2.npm install -g vue/cli-init 3.初始化vue项目 4.启动vue项目 Vscode初建Vue时几个需要注意的问题-CSDN博客 1.npm install webpack -g 全局安装webpack 直接命令提示符运行改指令会报错,operation not permitted 注意&#…

软件推荐 篇三十七:开源免费无广告的在线音乐免费播放 | MusicFree纯净无广告体验-小众冷门推荐

引言 自从QQ音乐没了杰伦、某云开始收费,除了各种广告弹窗导致电脑卡的要死,打工人就靠这点音乐背景熬夜了,木有办法,得有个开源免费的听歌软件吧,一搜github,软件一大堆,作为一个打工仔&#…

python--for循环

for循环: python中的for循环是用来迭代容器中的每一个元素的,而不是c,java中理解那个循环; for 零时变量 in 容器: print(零时变量) #每一个迭代出的元素 range 全局函数: …

10、chrome拓展程序的实现

一、拓展程序的实现 拓展程序项目的构成 和前端项目一样,拓展程序也是有Html、CSS、JS文件实现的,现在看来它就是一个静态的前端页面。但是不同的是,拓展程序中还需要额外的一个清单文件,就是manifest.json,清单文件可…

Saltstack 最大打开文件数问题之奇怪的 8192

哈喽大家好,我是咸鱼。 今天分享一个在压测过程中遇到的问题,当时排查这个问题费了我们好大的劲,所以我觉得有必要写一篇文章来记录一下。 问题出现 周末在进行压测的时候,测试和开发的同事反映压测有问题,请求打到…

在 Linux/Ubuntu/Debian 上安装 SQL Server 2019

Microsoft 为 Linux 发行版(包括 Ubuntu)提供 SQL Server。 以下是有关如何执行此操作的基本指南: 注册 Microsoft Ubuntu 存储库并添加公共存储库 GPG 密钥: sudo wget -qO- https://packages.microsoft.com/keys/microsoft.as…

活动回顾 | 走进华为向深问路,交流数智办公新体验

3月20日下午,“企业数智办公之走进华为”交流活动在华为上海研究所成功举办。此次活动由上海恒驰信息系统有限公司主办,华为云计算技术有限公司和上海利唐信息科技有限公司协办,旨在通过对企业数字差旅和HR数智化解决方案的交流,探…

企业网络基础设施物理安全面临全新挑战

企业网络基础设施的物理安全是确保业务连续性和数据完整性的关键组成部分。随着技术的发展和环境的变化,这些基础设施面临着新的挑战。以下是一些主要的挑战和的解决方案 一、机房、仓库、档案馆物理安全事件频发的挑战: 1.电力安全事件:市…

Bumblebee双目测量基本原理

一.双目视觉原理 双目立体视觉三维测量是基于视差原理。 图 双目立体成像原理 因此,左相机像面上的任意一点只要能在右相机像面上找到对应的匹配点,就可以确定出该点的三维坐标。这种方法是完全的点对点运算,像面上所有点只要存在相应的匹配点,就可以参与上述运算,从而获…

代码随想录笔记|C++数据结构与算法学习笔记-二叉树(一)|二叉树的递归遍历、二叉树的迭代遍历、二叉树的统一迭代法

全文基于代码随想录及相关讲解视频。 文字链接:《代码随想录》 文章目录 二叉树的递归遍历二叉树的前序遍历C代码如下 二叉树的中序遍历二叉树的后序遍历 二叉树的迭代遍历前序遍历前序遍历C代码 右序遍历右序遍历C代码 中序遍历为什么中序遍历不同中序遍历迭代法的…

【C#】使用C#窗体应用开启/停止Apache、MySQL服务

目录 一、前言 二、效果图 三、配置文件 四、代码 五、一键启动/停止所有服务 一、前言 使用C#窗体应用开启Apache、MySQL服务,不仅仅是Apache、MySQL,其他服务也可以使用同样的方法操作,包括开启自己写的脚本服务。 二、效果图 两种状…

【大数据】五、yarn基础

Yarn Yarn 是用来做分布式系统中的资源协调技术 MapReduce 1.x 对于 MapReduce 1.x 的版本上: 由 Client 发起计算请求,Job Tracker 接收请求之后分发给各个TaskTrack进行执行 在这个阶段,资源的管理与请求的计算是集成在 mapreduce 上的…

TCP重传机制详解——01概述

文章目录 TCP重传机制详解——01概述什么是TCP重传?TCP为什么要重传?TCP如何做到重传?TCP重传方式有哪些超时重传(timeout or timer-based retransmission)快速重传(fast retransmission或者fast retransmit)改进的重传机制,早期重…

单机模拟分布式MINIO(阿里云)

拉取的最新MINIO: minio version RELEASE.2024-03-15T01-07-19Z Runtime: go1.21.8 linux/amd64 分布式 MinIO 至少需要4个节点,也就意味着至少4个硬盘,对于囊中羞涩仅用来开发测试的人来说,这笔花销还是比较高昂。有没有更好的…

手机可以看到电脑在干什么吗

手机与电脑之间的连接与互动已成为我们日常生活和工作中的常态。 那么,一个常被提及的问题是:手机可以看到电脑在干什么吗? 答案是肯定的。 随着技术的不断进步,我们现在已经可以通过多种方式实现手机对电脑操作的实时监控。 首…

hadoop namenode 查看日志里面报错8485无法连接

一、通过日志排查问题: 1、首先我通过jpsall命令查看我的进程,发现namenode都没有开启 2、找到问题后首先进入我的日志目录里查看namenode.log [rootnode01 ~]# /opt/yjx/hadoop-3.3.4/logs/ [rootnode01 ~]# ll [rootnode01 ~]# cat hadoop-root-nam…

短视频矩阵系统--技术实际开发打板3年真实开发分享

短视频矩阵系统--技术实际开发打板3年真实开发分享,短视频矩阵系统/矩阵获客系统是一种基于短视频平台的获客游戏。短视频矩阵系统可以通过多账号发布来替代传统的单账号游戏。可以一键发布所有账号,批量制作多个视频AI智能剪辑。过去很多人只能完成的工…

JupyterNotebook 如何切换使用的虚拟环境kernel

在Jupyter Notebook中,如果需要修改使用的虚拟环境Kernel: 首先,需要确保虚拟环境已经安装conda上【conda基本操作】 打开Jupyter Notebook。 在Jupyter Notebook的顶部菜单中,选择 “New” 在弹出的窗口中,列出了…

练习 12 Web [极客大挑战 2019]BabySQL

本题复习:1.常规的万能语句SQL查询,union联合查询,Extractvalue()报错注入 extractvalue(1,concat(‘0x7e’,select(database())))%23 我一开始挨着试,感觉都无效 直到报错注入,查到了库名‘geek’ 尝试查表名&…