机器学习——线性回归(头歌实训)

news2024/11/18 1:41:53

头歌机器学习实训代码、答案,如果能够帮到您,希望可以点个赞!!! 

如果有问题可以csdn私聊或评论!!!感谢您的支持

目录

第1关:简单线性回归与多元线性回归

第2关:线性回归的正规方程解 

第3关:衡量线性回归的性能指标 

第4关:scikit-learn线性回归实践 - 波斯顿房价预测 


第1关:简单线性回归与多元线性回归

  • 1、下面属于多元线性回归的是?( BC

    A、求得正方形面积与对角线之间的关系。
    B、建立股票价格与成交量、换手率等因素之间的线性关系。
    C、建立西瓜价格与西瓜大小、西瓜产地、甜度等因素之间的线性关系。
    D、建立西瓜书销量与时间之间的线性关系。
  • 2、若线性回归方程得到多个解,下面哪些方法能够解决此问题?( ABC

    A、获取更多的训练样本
    B、选取样本有效的特征,使样本数量大于特征数
    C、加入正则化项
    D、不考虑偏置项b
  • 3、下列关于线性回归分析中的残差(预测值减去真实值)说法正确的是?( A )

    A、残差均值总是为零
    B、残差均值总是小于零
    C、残差均值总是大于零
    D、以上说法都不对

第2关:线性回归的正规方程解 

#encoding=utf8 
import numpy as np
def mse_score(y_predict,y_test):
    '''
    input:y_predict(ndarray):预测值
          y_test(ndarray):真实值
    ouput:mse(float):mse损失函数值
    '''
    #********* Begin *********#
    mse = np.mean((y_predict-y_test)/2)
    #********* End *********#
    return mse
class LinearRegression :
    def __init__(self):
        '''初始化线性回归模型'''
        self.theta = None
    def fit_normal(self,train_data,train_label):
        '''
        input:train_data(ndarray):训练样本
              train_label(ndarray):训练标签
        '''
        #********* Begin *********#
        x = np.hstack([np.ones((len(train_data),1)),train_data])
        self.theta =np.linalg.inv(x.T.dot(x)).dot(x.T).dot(train_label)
        #********* End *********#
        return self.theta
    def predict(self,test_data):
        '''
        input:test_data(ndarray):测试样本
        '''
        #********* Begin *********#
        x = np.hstack([np.ones((len(test_data),1)),test_data])
        return x.dot(self.theta)
        #********* End *********#

第3关:衡量线性回归的性能指标 

#encoding=utf8 
import numpy as np
#mse
def mse_score(y_predict,y_test):
    mse = np.mean((y_predict-y_test)**2)
    return mse
#r2
def r2_score(y_predict,y_test):
    '''
    input:y_predict(ndarray):预测值
          y_test(ndarray):真实值
    output:r2(float):r2值
    '''
    #********* Begin *********#
    r2 = 1 - mse_score(y_predict,y_test)/np.var(y_test)
    #********* End *********#
    return r2
class LinearRegression :
    def __init__(self):
        '''初始化线性回归模型'''
        self.theta = None
    def fit_normal(self,train_data,train_label):
        '''
        input:train_data(ndarray):训练样本
              train_label(ndarray):训练标签
        '''
        #********* Begin *********#
        x = np.hstack([np.ones((len(train_data),1)),train_data])
        self.theta =np.linalg.inv(x.T.dot(x)).dot(x.T).dot(train_label)
        #********* End *********#
        return self
    def predict(self,test_data):
        '''
        input:test_data(ndarray):测试样本
        '''
        #********* Begin *********#
        x = np.hstack([np.ones((len(test_data),1)),test_data])
        return x.dot(self.theta)
        #********* End *********#

第4关:scikit-learn线性回归实践 - 波斯顿房价预测 

#encoding=utf8
#********* Begin *********#
import pandas as pd
from sklearn.linear_model import LinearRegression
 
#读取训练数据
train_data = pd.read_csv('./step3/train_data.csv')
 
#读取训练标签
train_label = pd.read_csv("./step3/train_label.csv")
train_label = train_label["target"]
 
#读取测试数据
test_data = pd.read_csv("./step3/test_data.csv")
lr = LinearRegression()
 
#训练模型
lr.fit(train_data,train_label)
 
#预测标签
predict = lr.predict(test_data)
 
#写入csv
df = pd.DataFrame({"result":predict}) 
df.to_csv("./step3/result.csv", index=False)
 
#********* End *********#
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1537840.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【机器学习入门 】支持向量机

系列文章目录 第1章 专家系统 第2章 决策树 第3章 神经元和感知机 识别手写数字——感知机 第4章 线性回归 第5章 逻辑斯蒂回归和分类 前言 支持向量机(Support Vector Machine) 于1995年发表,由于其优越的性能和广泛的适用性,成为机器学习的主流技术&…

在Linux/Debian/Ubuntu上通过 Azure Data Studio 管理 SQL Server 2019

Microsoft 提供 Azure Data Studio,这是一种可在 Linux、macOS 和 Windows 上运行的跨平台数据库工具。 它提供与 SSMS 类似的功能,包括查询、脚本编写和可视化数据。 要在 Ubuntu 上安装 Azure Data Studio,可以按照以下步骤操作&#xff1…

腾讯在GDC 2024展示GiiNEX AI游戏引擎现已投入《元梦之星》中开发使用,展示强大AIGC能力

在近日举行的GDC 2024游戏开发者大会上,腾讯揭开了其AI Lab团队精心打造的GiiNEX AI游戏引擎的神秘面纱。这款引擎依托先进的生成式AI和决策AI技术,为游戏行业带来了革命性的变革。 相关阅读:腾讯游戏出品!腾讯研效AIGC&#xff…

【测试开发学习历程】MySQL增删改操作 + 备份与还原 + 索引、视图、存储过程

前言: SQL内容的连载,到这里就是最后一期啦! 如果有小伙伴要其他内容的话,我会追加内容的。(前提是我有学过,或者能学会) 接下来,我们就要开始python内容的学习了 ~ ~ 目录 1 …

复旦大学MBA:iLab项目探寻科技创新 助力企业出海

2024年2月底,新一轮复旦MBA iLab商业咨询项目(以下简称iLab项目)正式拉开序幕。      科创大时代,如何于变局中创新突破、绘就商业“蓝图”?怎样把握ESG投资机遇,创造可持续发展的未来?如何…

云计算系统等保测评对象和指标选取

1、云计算服务模式与控制范围关系 参考GBT22239-2019《基本要求》附录D 云计算应用场景说明。简要理解下图,主要是云计算系统安全保护责任分担原则和云服务模式适用性原则,指导后续的测评对象和指标选取。 2、测评对象选择 测评对象 IaaS模式 PaaS模式…

Sphinx + Readthedocs 避坑速通指南

博主在学习使用 Sphinx 和 Read the docs 的过程中, 碰到了许多奇葩的 bug, 使得很简单的任务花费了很长的时间才解决,现在在这里做一个分享,帮助大家用更少的时间高效上线文档的内容。 总的来说, 任务分为两个部分: …

C#、.NET版本、Visual Studio版本对应关系及Visual Studio老版本离线包下载地址

0、写这篇文章的目的 由于电脑的环境不同,对于一个老电脑找到一个适配的vscode环境十分不易。总结一下C#、.NET、Visual Studio版本的对应关系,及各个版本Visual Studio的下载地址供大家参考 1、C#、.NET版本、Visual Studio版本对应关系如下 2、Visua…

C++初阶:string类相关练习题

目录 1. 字符串相加2. 反转字母3. 字符串中唯一字母4. 字符串中最后一个单词5. 验证回文串6. 反转字符II7. 反转字符串中的单词8. 字符串相乘 1. 字符串相加 题目信息: 题目连接: 字符串相加 class Solution { public:string addStrings(string num1, s…

PHP自动获取视频时长的方法

摘要 最近在给客户开发短视频项目模块中遇到自动获取上传视频的时长并用于外部展示的需求。 刚开始想到用比较笨的方法,就是上传之前手动写入视频文件的大小,无奈嫌麻烦,寻求其它方法。 也是一个比较笨的方法—— ffmpeg 通过下载 ffmpeg&am…

vue的优缺点有那些 组件常用的有那些?

优点: 组件化开发,提升效率,方便复用,便于协同开发单页面路由易于结合其他的第三方库丰富的api方法轻量高效,虚拟DOMMVVM,数据驱动视图轻量级的框架 缺点: 缺少高阶教程和文档生态环境不如angular和re…

ChatGPTGPT4科研应用、数据分析与机器学习、论文高效写作、AI绘图技术教程

原文链接:ChatGPTGPT4科研应用、数据分析与机器学习、论文高效写作、AI绘图技术教程https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247598506&idx2&sn14f96667bfbeba5f51366a1f019e3d64&chksmfa82004dcdf5895bba2784ba10f6715f6f5e4c59c9b1…

ElasticSearch之数据建模

写在前面 本文看下es数据建模相关的内容。 1:什么是数据建模 数据建模是对真实数据的一种抽象,最终映射为计算机形式的表现。其包括如下三个阶段: 1:概念模型 2:逻辑模型 3:数据模型2:es数据…

此站点正在尝试打开 ,chrome/edge 允许http网站打开url schema

正常https链接会有首次允许选项 但http没有,每次都会弹出,非常烦人。 Chrome / Edge 配置 地址栏输入 chrome://flags/搜索Insecure origins treated as secure, 配置允许网站,需要协议和端口再次跳转会显示始终允许选项

(附源码)基于Spring Boot和Vue的前后端分离考研资料分享平台的设计与实现

前言 💗博主介绍:✌专注于Java、小程序技术领域和毕业项目实战✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 2024年Java精品实战案例《100套》 🍅文末获取源码联系🍅 &#x1f31…

【Godot4.2】2D辅助类Geometry2D入门

概述 Godot4.2提供了一个名叫Geometry2D的类。它提供了一些用于2D几何图形如多边形(Polygon)、折线(PolyLine)相关的函数,可以方便实现诸如多边形与多边形或多边形与折线的布尔运算、求交点等。 这是一个非常强大的2…

目标控制器数字孪生系统的研究与设计

文章来源:铁路计算机应用,2023,32(10):36-41. 作者:许婧,杨硕,季志均 摘要:随着目标控制器(OC,Object Controller)系统在轨道交通领域的推广应用,其硬件投入较高、研发…

css background-color属性无效

因为工作需要&#xff0c;最近在帮H5同事开发几个页面&#xff0c;在使用H5进行如下布局的时候&#xff0c;发现设置 background-color为白色无效。 代码如下&#xff1a; <div class "bottomBar"><div style"position: fixed; left: 20px;">…

解决arco-design下拉框回显id的问题

问题描述 下拉框回显选项中没有的选项&#xff0c;就会出现以下情况&#xff0c;只能把uid回显上去 解决方案 使用ui框架自带的属性fallback-option 用法 按以上操作&#xff0c;即可解决选择框回显uid问题