Amazon SageMaker + Stable Diffusion 搭建文本生成图像模型

news2025/1/11 14:55:21

如果我们的计算机视觉系统要真正理解视觉世界,它们不仅必须能够识别图像,而且必须能够生成图像文本到图像的 AI 模型仅根据简单的文字输入就可以生成图像

近两年,以ChatGPT为代表的AIGC技术崭露头角,逐渐从学术研究的象牙塔迈向工业应用的广阔天地。随着下游行业对快速处理柔性商业业务的需求日益增长,如何提供一个便捷、高效且完整的企业级人工智能解决方案成为了业界亟待解决的问题。幸运的是,亚马逊云服务推出了Amazon SageMaker平台,为企业提供了一站式的人工智能解决方案,满足了市场的迫切需求。

本篇文章将采用Amazon SageMaker+Stable Diffusion实现文本生成图像Demo!

一、Amazon SageMaker简介

Amazon SageMaker是一款亚马逊云服务旗下的全面托管机器学习平台。该平台集成了众多高效工具和服务,使得构建、训练和部署机器学习模型变得前所未有的简单。Amazon SageMaker拥有灵活的计算资源及配置选项,无论项目规模大小,它都能以强大的计算能力,助力训练大型模型。此外,它还提供了强大的管理和监控功能,确保机器学习工作流程的顺畅运行。

Amazon SageMaker机器学习平台提供了一系列能够快速构建、训练和部署机器学习模型的工具和服务,使机器学习工作流程更加高效、易用和可扩展。现在进入

亚马逊云科技: https://mic.anruicloud.com/url/1037

可以免费试用!

二、Amazon SageMaker + Stable Diffusion实践

2.1、创建Amazon SageMaker实例

首先打开亚马逊云控制台,在查找服务处搜索关键词SageMaker,进入Amazon SageMaker环境:

随后,在界面左侧定位至“笔记本”选项并点击。接着,依次选择“笔记本实例”和“创建笔记本实例”,进入配置页面。在此页面中,需注意选择适合的“笔记本实例类型”申请资源的类型,这里建议选择加速型g4dn.xlarge实例,确保高效的计算性能。

在操作系统方面,推荐选择Amazon Linux 2,并搭配Jupyter Lab 3这一交互式编程环境。“卷大小”可根据个人需求进行选择,建议至少设置为20GB,最后点击确定。

2.2、简单测试(可选)

创建实例成功后,可以新建一个初始notebook,复制并粘贴以下代码片段到笔记本的单元格,安装所需依赖

pip install --upgrade -q aiobotocore

pip install -q xgboost==1.3.1

然后复制并粘贴以下代码片段,点击run运行:

import pandas as pd
import boto3
import sagemaker
import json
import joblib
import xgboost as xgb
from sklearn.metrics import roc_auc_score

# Set SageMaker and S3 client variables
sess = sagemaker.Session()

region = sess.boto_region_name
s3_client = boto3.client("s3", region_name=region)

sagemaker_role = sagemaker.get_execution_role()

# Set read and write S3 buckets and locations
write_bucket = sess.default_bucket()
write_prefix = "fraud-detect-demo"

read_bucket = "sagemaker-sample-files"
read_prefix = "datasets/tabular/synthetic_automobile_claims" 

train_data_key = f"{read_prefix}/train.csv"
test_data_key = f"{read_prefix}/test.csv"
model_key = f"{write_prefix}/model"
output_key = f"{write_prefix}/output"

train_data_uri = f"s3://{read_bucket}/{train_data_key}"
test_data_uri = f"s3://{read_bucket}/{test_data_key}"
hyperparams = {
                "max_depth": 3,
                "eta": 0.2,
                "objective": "binary:logistic",
                "subsample" : 0.8,
                "colsample_bytree" : 0.8,
                "min_child_weight" : 3
              }

num_boost_round = 100
nfold = 3
early_stopping_rounds = 10



# Set up data input
label_col = "fraud"
data = pd.read_csv(train_data_uri)

# Read training data and target
train_features = data.drop(label_col, axis=1)
train_label = pd.DataFrame(data[label_col])
dtrain = xgb.DMatrix(train_features, label=train_label)

# Cross-validate on training data
cv_results = xgb.cv(
    params=hyperparams,
    dtrain=dtrain,
    num_boost_round=num_boost_round,
    nfold=nfold,
    early_stopping_rounds=early_stopping_rounds,
    metrics=["auc"],
    seed=10,
)


metrics_data = {
    "binary_classification_metrics": {
        "validation:auc": {
            "value": cv_results.iloc[-1]["test-auc-mean"],
            "standard_deviation": cv_results.iloc[-1]["test-auc-std"]
        },
        "train:auc": {
            "value": cv_results.iloc[-1]["train-auc-mean"],
            "standard_deviation": cv_results.iloc[-1]["train-auc-std"]
        },
    }
}


print(f"Cross-validated train-auc:{cv_results.iloc[-1]['train-auc-mean']:.2f}")
print(f"Cross-validated validation-auc:{cv_results.iloc[-1]['test-auc-mean']:.2f}")

这段代码的主要作用是在Amazon S3存储桶中的的汽车保险索赔数据集上,训练一个 XGBoost 二进制分类模型,并评估模型的性能并使用交叉验证来评估其性能,运行单元格后会显示交叉验证训练和验证 AUC 分数。

2.3、Stable Diffusion实践

上一步运行没问题后,我们重新打开Jupyter页面,进入对应实例,选择右侧upload,上传Notebook代码,代码下载链接:

https://static.us-east-1.prod.workshops.aws/public/648e1f0c-f5e0-40eb-87b1-7f3638dba539/static/code/notebook-stable-diffusion.ipynb

上传到笔记本实例当中,上传成功后,点击打开,选择conda_pytorch_p39核,并点击set kernel

这个Diffusion Model的Amazon SageMaker Jupyter文件已经为我们写好了所有配置步骤,环境安装,我们直接点击Run:

该代码在笔记本实例中下载并测试Stable Diffusion模型文件,然后编写模型推理入口,打包模型文件,并上传至S3桶,最后使用代码部署模型至Amazon SageMaker Inference Endpoint。

在juypter notebook的最后,加上这样一段代码,然后将想要生成的句子可以写在prompt里面,就可以实现完整的文本生成图像功能:

from PIL import Image
from io import BytesIO
import base64

# helper decoderdef decode_base64_image(image_string):
    base64_image = base64.b64decode(image_string)
    buffer = BytesIO(base64_image)
    return Image.open(buffer)

#run prediction
response = predictor[SD_MODEL].predict(data={
    "prompt": [
        "A cute panda is sitting on the sofa",
        "a siamese cat wearing glasses,  working hard at the computer",
    ],
    "height" : 512,
    "width" : 512,
    "num_images_per_prompt":1
  }
)

#decode images
decoded_images = [decode_base64_image(image) for image in response["generated_images"]]

#visualize generationfor image in decoded_images:
    display(image)

如上,我们试着生成一张可爱的熊猫坐在沙发上面,等待几秒钟后,推理完成,得到如下结果:

三、Amazon SageMaker 的功能特性

Amazon SageMaker以其强大的功能特性和灵活的配置选项,为数据科学家、业务分析师以及广大开发者提供了全面、高效的机器学习解决方案。

首先,Amazon SageMaker能够让不同背景的用户都能够轻松利用机器学习进行创新。对于数据科学家而言,其提供了功能强大的集成开发环境(IDE),使得他们能够轻松构建、训练和部署复杂的机器学习模型。而对于业务分析师,其提供了无代码界面,即便没有深厚的编程背景,也能通过简单的操作实现机器学习的应用。

其次,Amazon SageMaker 支持如 TensorFlow、PyTorch 和 Apache MXNet多种主流的机器学习框架、支持如scikit-learn、XGBoost等各种机器学习工具包、支持Python、R 等多种编程语言,使得用户能够充分利用现有的技术资源和经验,在机器学习领域实现更快速、更高效的创新。无论是数据科学家、机器学习工程师还是开发者,都能从 Amazon SageMaker 中受益,推动机器学习技术的不断发展和应用。

最后,Amazon SageMaker拥有完全托管、可扩展的基础设施。用户无需担心底层硬件的维护和扩展问题,只需专注于模型的开发和优化。Amazon SageMaker通过高性能、经济实惠的基础设施支持,帮助用户轻松构建自己的机器学习模型和生成式人工智能应用程序的开发。

现在进入亚马逊云科技: https://mic.anruicloud.com/url/1037

可以获取Studio 笔记本上每月 250 个小时的 ml.t3.medium,或者按需笔记本实例上每月 250 个小时的 ml.t2 medium 或 ml.t3.medium,每月 50 个小时的 m4.xlarge 或150小时 的m5.xlarge 实例试用。除此之外,更有云服务器(Amazon EC2),云存储(Amazon S3),负载均衡(Elastic Load Balancing),虚拟服务器VPS(Amazon Lightsail)、视频会议(Amazon Chime )等等100 余种云产品或服务免费试用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1535237.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于python+vue云上水果超市的设计与实现flask-django-php-nodejs

本论文的主要内容包括: 第一,研究分析当下主流的web技术,结合超市日常管理方式,进行云上水果超市的数据库设计,设计云上水果超市功能,并对每个模块进行说明。 第二,陈列说明该系统实现所采用的架…

kubernetes-RBAC 鉴权

kubernetes-RBAC 鉴权 kubernetes-RBAC 鉴权1、查看整个k8s集群内部有哪些资源2、什么是鉴权2.1、鉴权的目的2.2、怎么去鉴权:RBAC2.3、对鉴权的理解🌱2.4、租户 3、对一些概念的解释3.1、概念简述3.2、账号类型:Useraccount和ServiceAccount…

AI绘画可以稳定生成中文了:白嫖阿里云部署AnyText

长久以来,在AI绘画中书写文字一直是个难题。即使到了SDXL时代,我们也只能输出英文,而且还经常出现漏掉字母的情况。现在阿里达摩院搞出了一个解决方案,可以在Stable Diffusion生成的作品中稳定输出中、英、日、韩等多种文字&#…

Prompt-RAG:在特定领域中应用的革新性无需向量嵌入的RAG技术

论文地址:https://arxiv.org/ftp/arxiv/papers/2401/2401.11246.pdf 原文地址:https://cobusgreyling.medium.com/prompt-rag-98288fb38190 2024 年 3 月 21 日 虽然 Prompt-RAG 确实有其局限性,但在特定情况下它可以有效地替代传统向量嵌入 …

基于Springboot+vue的在线试题题库管理系统+数据库+报告+免费远程调试

项目介绍: Springbootvue的在线试题题库管理系统,Javaee项目,springboot vue前后端分离项目 本文设计了一个基于Springbootvue的前后端分离的在线试题题库管理系统,采用M(model)V(view)C&#x…

Java项目:68 ssm校园美食交流系统+vue

作者主页:源码空间codegym 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 主要功能包括管理员:首页、个人中心、美食分类管理、美食信息管理、用户管理、管理员管理、论坛中心、系统管理。 前台首页&#…

Docker部署Alist全平台网盘神器结合内网穿透实现无公网IP访问云盘资源

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| ​💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-oZuxWTWUiXLx3aQO {font-family:"trebuchet ms",verdana,arial,sans-serif;f…

B011-springcloud alibaba rpc通信 Dubbo

目录 介绍实现提供统一业务api服务提供者1.导入依赖2添加dubbo配置3编写并暴露服务 服务消费者1.导入依赖2添加dubbo配置3引用服务 测试 介绍 Dubbo是阿里巴巴开源的基于 Java 的高性能 RPC分布式服务框架,致力于提供高性能和透明化的 RPC远程服务调用方案&#xf…

数字化转型:传统行业的新出路?

近年来,数字化转型已成为各行各业的热议话题。许多传统行业正面临着巨大的挑战,例如市场竞争加剧、成本上升、利润率下降等。数字化转型被视为传统行业破局的关键。那么,数字化转型究竟是不是传统行业的新出路呢? 传统行业面临的挑…

vscode中转(跳板)连接目标主机

vscode中转(跳板)连接目标主机 文章目录 引言正文跳转配置本地密钥 总结 引言 简单讲解如何通过vscode经过跳板机到达目标机的方式,本文基于linux平台,理论上vscode是跨平台的1。 如下本机通过两层跳板到目标主机如何通过vscode…

【开源】SpringBoot框架开发知识图谱构建系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 知识图谱模块2.2 知识点模块2.3 学生测评模块2.4 学生成绩模块 三、系统展示四、核心代码4.1 查询知识点4.2 新增知识点4.3 查询知识图谱4.4 查询学生成绩4.5 查询学生成绩 五、免责说明 一、摘要 1.1 项目介绍 基于J…

学习笔记|如何用Go程序采集温湿度传感器数据

在共创社内部的交流中,先前有一位成员展示了如何借助C语言来实现对AHT20温湿度传感器数据的读取。这一实例触发了另一位共创官的灵感,他决定采纳Go语言重新构建这一数据采集流程。接下来,我们将详细解析整个利用Go语言从AHT20温湿度传感器获取…

图论基础|695. 岛屿的最大面积、1020. 飞地的数量、130. 被围绕的区域

695. 岛屿的最大面积 力扣题目链接(opens new window) 给你一个大小为 m x n 的二进制矩阵 grid 。 岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0&#xff0…

WebGIS航线编辑器(无人机航线规划)

无人机航点、航线规划,实现全自动航点飞行作业及飞行航拍。禁飞区、作业区功能保障飞行安全。 GIS引擎加载 const viewer new Cesium.Viewer("cesiumContainer", { imageryProvider: new Cesium.IonImageryProvider({ assetId: 3872 }), }); const im…

水泥领域智慧工厂物联网解决方案

水泥领域智慧工厂物联网解决方案 在水泥生产行业中,构建智慧工厂物联网解决方案已经成为推动产业升级、实现智能制造的关键路径。该方案深度融合了先进的信息技术与传统的水泥生产工艺,通过全面感知、可靠传输、智能处理等环节,实现了对整个…

打造高效自动化渗透测试系统:关键步骤与实践

随着当前网络安全威胁的不断扩展与升级,开展渗透测试工作已经成为广大企业组织主动识别安全漏洞与潜在风险的关键过程。然而,传统的人工渗透测试模式对测试人员的专业能力和经验水平有很高的要求,企业需要投入较大的时间和资源才能完成。在此…

[实践经验]: visual studio code 实用技巧

目录 editor rulers 这里主要总结一些常用的VScode技巧,不定时更新… editor rulers 设置 -> 搜索 editor.rulers -> edit in settings.json "editor.rulers": [{"column": 80,"color": "#ff00FF"},]效果如图

基于Java的汽车客运站管理系统的设计与实现论文

摘 要 互联网发展至今,无论是其理论还是技术都已经成熟,而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播,搭配信息管理工具可以很好地为人们提供服务。针对汽车客运站售票信息管理混乱,出错率高,信息安…

Tensorflow2.0笔记 - FashionMnist数据集训练

本笔记使用FashionMnist数据集,搭建一个5层的神经网络进行训练,并统计测试集的精度。 本笔记中FashionMnist数据集是直接下载到本地加载的方式,不涉及用梯子。 关于FashionMnist的介绍,请自行百度。 #Fashion Mnist数据集本地下载…

2024开年首展,加速科技展台“热辣滚烫”

3月20日,备受瞩目的半导体行业盛会SEMICON China 2024在上海新国际博览中心盛大启幕,展会汇集了来自全球的半导体领域顶尖企业与专业人士。加速科技作为业界领先的半导体测试设备供应商携重磅测试设备及解决方案精彩亮相,展示了最新的半导体测…