AI助力生产制造质检,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建工业生产制造场景下的瓷砖瑕疵检测识别分析系统

news2024/9/22 5:33:29

瓷砖生产环节一般经过原材料混合研磨、脱水、压胚、喷墨印花、淋釉、烧制、抛光,最后进行质量检测和包装。得益于产业自动化的发展,目前生产环节已基本实现无人化。而质量检测环节仍大量依赖人工完成。一般来说,一条产线需要配数名质检工,人工成本是相当高昂的,且需要有经验的工人师傅才能够胜任,长时间在高光下观察瓷砖表面寻找瑕疵。这样导致质检效率低下、质检质量层次不齐且成本居高不下。瓷砖表检是瓷砖行业生产和质量管理的重要环节,也是困扰行业多年的技术瓶颈。考虑到当下AI产业化融合的快速发展趋势,将AI技术应用于实际的工业生产制造流程中,事实证明能够有效提升瓷砖表面瑕疵质检的效果和效率,降低对大量人工的依赖。本文也是基于这样的深度思考,想要从实验的角度来开发构建瓷砖生产制造场景下的智能化自动化瑕疵缺陷检测识别系统,助力实际生产制造。

在前文中我们基于yolov5s+CBAM的技术方案初步实践了瓷砖瑕疵检测项目,刚兴趣的话可以自行移步阅读即可:

《AI助力生产制造质检,基于轻量级YOLOv5s融合CBAM注意力机制开发构建工业生产制造场景下的瓷砖瑕疵检测识别分析系统》

本文则是想要完整地开发构建YOLOv5全系列五款不同参数量级的模型来纵向对比不同模型的性能表现,首先看下实例效果:

本文是选择的是YOLOv5算法模型来完成本文项目的开发构建。相较于前两代的算法模型,YOLOv5可谓是集大成者,达到了SOTA的水平,下面简单对v3-v5系列模型的演变进行简单介绍总结方便对比分析学习:
【YOLOv3】
YOLOv3(You Only Look Once version 3)是一种基于深度学习的快速目标检测算法,由Joseph Redmon等人于2018年提出。它的核心技术原理和亮点如下:
技术原理:
YOLOv3采用单个神经网络模型来完成目标检测任务。与传统的目标检测方法不同,YOLOv3将目标检测问题转化为一个回归问题,通过卷积神经网络输出图像中存在的目标的边界框坐标和类别概率。
YOLOv3使用Darknet-53作为骨干网络,用来提取图像特征。检测头(detection head)负责将提取的特征映射到目标边界框和类别预测。
亮点:
YOLOv3在保持较高的检测精度的同时,能够实现非常快的检测速度。相较于一些基于候选区域的目标检测算法(如Faster R-CNN、SSD等),YOLOv3具有更高的实时性能。
YOLOv3对小目标和密集目标的检测效果较好,同时在大目标的检测精度上也有不错的表现。
YOLOv3具有较好的通用性和适应性,适用于各种目标检测任务,包括车辆检测、行人检测等。
【YOLOv4】
YOLOv4是一种实时目标检测模型,它在速度和准确度上都有显著的提高。相比于其前一代模型YOLOv3,YOLOv4在保持较高的检测精度的同时,还提高了检测速度。这主要得益于其采用的CSPDarknet53网络结构,主要有三个方面的优点:增强CNN的学习能力,使得在轻量化的同时保持准确性;降低计算瓶颈;降低内存成本。YOLOv4的目标检测策略采用的是“分而治之”的策略,将一张图片平均分成7×7个网格,每个网格分别负责预测中心点落在该网格内的目标。这种方法不需要额外再设计一个区域提议网络(RPN),从而减少了训练的负担。然而,尽管YOLOv4在许多方面都表现出色,但它仍然存在一些不足。例如,小目标检测效果较差。此外,当需要在资源受限的设备上部署像YOLOv4这样的大模型时,模型压缩是研究人员重新调整较大模型所需资源消耗的有用工具。
优点:
速度:YOLOv4 保持了 YOLO 算法一贯的实时性,能够在检测速度和精度之间实现良好的平衡。
精度:YOLOv4 采用了 CSPDarknet 和 PANet 两种先进的技术,提高了检测精度,特别是在检测小型物体方面有显著提升。
通用性:YOLOv4 适用于多种任务,如行人检测、车辆检测、人脸检测等,具有较高的通用性。
模块化设计:YOLOv4 中的组件可以方便地更换和扩展,便于进一步优化和适应不同场景。
缺点:
内存占用:YOLOv4 模型参数较多,因此需要较大的内存来存储和运行模型,这对于部分硬件设备来说可能是一个限制因素。
训练成本:YOLOv4 模型需要大量的训练数据和计算资源才能达到理想的性能,这可能导致训练成本较高。
精确度与速度的权衡:虽然 YOLOv4 在速度和精度之间取得了较好的平衡,但在极端情况下,例如检测高速移动的物体或复杂背景下的物体时,性能可能会受到影响。
误检和漏检:由于 YOLOv4 采用单一网络对整个图像进行预测,可能会导致一些误检和漏检现象。

【YOLOv5】
YOLOv5是一种快速、准确的目标检测模型,由Glen Darby于2020年提出。相较于前两代模型,YOLOv5集成了众多的tricks达到了性能的SOTA:
技术原理:
YOLOv5同样采用单个神经网络模型来完成目标检测任务,但采用了新的神经网络架构,融合了领先的轻量级模型设计理念。YOLOv5使用较小的骨干网络和新的检测头设计,以实现更快的推断速度,并在不降低精度的前提下提高目标检测的准确性。
亮点:
YOLOv5在模型结构上进行了改进,引入了更先进的轻量级网络架构,因此在速度和精度上都有所提升。
YOLOv5支持更灵活的模型大小和预训练选项,可以根据任务需求选择不同大小的模型,同时提供丰富的数据增强扩展、模型集成等方法来提高检测精度。YOLOv5通过使用更简洁的代码实现,提高了模型的易用性和可扩展性。

简单看下实例数据:
 

使用到了将近2w的数据量来进行训练,训练量还是很大的。

训练数据配置文件如下:

# Dataset
path: ./dataset
train:
  - images/train
val:
  - images/test
test:
  - images/test



# Classes
names:
  0: GQXC
  1: QSKXC
  2: SSDXC
  3: BSDXC
  4: JYC
  5: BYC

实验截止目前,本文将YOLOv5系列五款不同参数量级的模型均进行了开发评测,接下来看下模型详情:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv5 object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/yolov5
 
# Parameters
nc: 6  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov5n.yaml' will call yolov5.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 1024]
  l: [1.00, 1.00, 1024]
  x: [1.33, 1.25, 1024]
 
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]
 
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13
 
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
 
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
 
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
 
   [[17, 20, 23], 1, Detect, [nc]],  # Detect(P3, P4, P5)
  ]

在实验训练开发阶段,所有的模型均保持完全相同的参数设置,等待漫长的训练完成后,来整体进行评测对比分析。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

从整体实验对比结果来看:n系列的模型效果最差,s系列的模型效果次之,m达到了和l系列相近的效果,x系列模型小鬼最优,综合考虑这里我们最终选择使用x系列的模型来作为最终的推理模型,接下来看下x系列模型的内容详情。

【离线推理实例】

【数据分布可视化】

不同类别数据还是比较不均衡的。

【PR曲线】

【训练可视化】

【混淆矩阵】

感兴趣的话都可以自行动手尝试下!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv5s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1535074.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

塔楼VR火灾逃生应急安全教育突破了传统模式

城镇化的高速发展,给消防安全带来了严峻的挑战,尤其是人员密集的办公场所,如何预防火灾发生,学习火灾成因,减少火灾发生避免不必要的损失,成为安全应急科普的重中之重。 通过模拟真实的办公场所火灾场景&am…

JVM监控工具

JVM监控工具 jps 查看系统中运行的java进程id PS D:\practise\test> jps 22672 Jps 13688 RemoteMavenServer36 1068 14188 TestApplication PS D:\practise\test> jmap 用来查看进行内存信息,实例个数以及占用内存大小 jmap -histo 进程id PS D:\prac…

Python使用PaddleSpeech实现语音识别(ASR)、语音合成(TTS)

目录 安装 语音识别 补全标点 语音合成 参考 PaddleSpeech是百度飞桨开发的语音工具 安装 注意,PaddleSpeech不支持过高版本的Python,因为在高版本的Python中,飞桨不再提供paddle.fluid API。这里面我用的是Python3.7 需要通过3个pip…

华为北向网管NCE开发教程(5)打包org.omg.CosNotification找不到

1问题描述 在IDE中,代码能正常运行,但是打包的时候,会抱不到一些类 2问题原因 导入的本地包中,能在IDE中找到,但是在使用maven打包时,maven找不到这些依赖包 3解决办法 将依赖包通过maven安装到maven…

基于python+vue灾害应急救援平台flask-django-php-nodejs

灾害应急救援平台的目的是让使用者可以更方便的将人、设备和场景更立体的连接在一起。能让用户以更科幻的方式使用产品,体验高科技时代带给人们的方便,同时也能让用户体会到与以往常规产品不同的体验风格。 与安卓,iOS相比较起来,…

python银行柜台管理系统flask-django-php-nodejs

相比于以前的传统手工管理方式,智能化的管理方式可以大幅降低银行的运营人员成本,实现了银行柜台的标准化、制度化、程序化的管理,有效地防止了银行柜台的随意管理,提高了信息的处理速度和精确度,能够及时、准确地查询…

Linux:Prometheus+Grafana+睿象云告警平台(3)

在上一章我进行了Prometheus和Grafana的基础搭建以及部署 Linux:Prometheus的源码包安装及操作(2)-CSDN博客https://blog.csdn.net/w14768855/article/details/136855988?spm1001.2014.3001.5501 1.注册 在监控中必不可少的就是监控告警&am…

螺旋卫星通信天线设计与有限元分析matlab仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 卫星搭载用于通讯的螺旋型天线,卫星尺寸: 10cm*10cm*30cm;天线类型:螺旋;天线UHF(约1GHz – 3GHz&#…

【精彩回顾】百度智能云千帆产品3月21日发布会

3月21日,AI Cloud Day:百度智能云千帆产品发布会在北京举办。会议聚焦百度智能云千帆大模型平台最新进展,分享思考与实践。百度智能云在发布会期间宣布: >>满足企业“效价比”核心诉求,千帆ModelBuilder大模型服…

clickhouse sql使用

1、arrayMap(fun1,arr1)使用 第一个参数是一个 lambda 函数,第二个参数是一个集合 eg、select arrayMap(x->x1,[1,2,3]) 对集合中每个数1 2、arrayJoin(arr1) 将集合由行转列 eg、 select arrayJoin([1,2,3]) eg、select arrayJoin(arrayMap(x->x1,[1,2,3])) …

学工系统0day挖掘-危害拉满

前言: 21年的挖的漏洞了 漏洞均已提交且均已修复,这里文章只做技术交流 正文: 漏洞挖掘过程: 起因是这样的 20年简单挖了一下这个学校,但是没把shell拿了 后面随着学习21年又回来看了看这个系统,果然发觉了很多新的东西,脱敏了就写文章下。 漏洞1:未授权批量挖掘:…

【C++】---string的模拟

【C】---string的模拟 一、string类实现1.string类的构造函数2.swap()函数3.拷贝构造函数4.赋值运算符重载5.析构6.迭代器7.operator[ ]8.size9.c_str()10.reserve()11.resize()12.p…

BetterDisplay Pro:让屏幕管理更高效、更便捷

BetterDisplay Pro是一款功能强大的显示器管理软件,适用于Windows和Mac操作系统。其主要功能包括显示器校准、自动校准、多种预设模式、手动校准以及可视化数据等。 具体而言,这款软件可以根据用户的需求和环境条件调整显示器的颜色、亮度和对比度等参数…

Java项目:68 ssm0校园美食交流系统+vue

作者主页:舒克日记 简介:Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 主要功能包括管理员:首页、个人中心、美食分类管理、美食信息管理、用户管理、管理员管理、论坛中心、系统管理。 前台首页:首…

【SpringBoot】登录校验之会话技术、统一拦截技术

真正的登录功能应该是: 登陆后才能访问后端系统页面,不登陆则跳转登陆页面进行登陆。 当我们没有设置登录校验,可以直接通过修改地址栏直接进入管理系统内部,跳过登录页。而后端系统的增删改查功能,没有添加判断用户是…

Redis进阶(持久化、复制、集群、多线程、缓存)

Redis进阶 1.Redis持久化1.1 什么是Redis持久化?为什么需要持久化?1.2 Redis持久化方式——RDB(Redis DataBase)1.2.1 什么是RDB?1.2.2 备份文件位置1.2.3 触发RDB的方式1.2.3.1 自动触发1.2.3.2 手动触发1.2.3.3 其他触发方式 1.2.4 RDB优缺…

(Ubuntu中调用相机花屏)Astra plus深度相机--rgb彩色图像花屏解决方法之一

在调试深度相机的过程中只能能调出深度图像和红外图像 在rviz的image的topic中选择彩色图像的话题不显示图像 1、查看相机的usb序列号 lsusb如上图所示,此相机的USB序列号是2bc5:050f,2bc5:060f 其中050f是显示彩色图像的 在这里可通过拔插相机来确定序列号是哪几…

经典Bug永流传---每周一“虫”(四十五)

如果有人错过机会,多半不是机会没来,而是因为机会过来时,没有一伸手抓住它。 大写W惹的祸 前提: A账号已登录 步骤: 打开某商品链接,然后在商品的评论区任意一条评论,点击回复,回…

0基础学习VR全景平台篇第146篇:为什么需要3D元宇宙编辑器?

一.什么是3D元宇宙编辑器? 3D元宇宙编辑器是全新3DVR交互渲染创作工具,集3D建模、虚拟展厅、AI数字人等能力,渲染和虚拟现实技术于一身的生产力工具。 具有跨平台和随时随地编辑等特点,可广泛应用于展会、展厅、博物馆、可视化园…

Unity 粒子在UI中使用时需要注意的地方

最近项目中要在UI中挂载粒子特效,美术给过来的粒子直接放到UI中会有一些问题,查询一些资料后,总结了一下 一: 粒子的大小发生变化,与在预制件编辑中设计的大小不同 在预制件编辑模式下,大小正常 实际使用的时候特别大或者特别小 经过检查,发现预制件编辑模式下,默认画布的Rend…